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CONVEXITY OF DOMAIN FUNCTIONALS

by
P. R. Garabedian and M. Schiffer

CHAPTER I

INTRODUCTION

1. Outline of the paper.

A problem of considerable significance is the study of the dependence
of the Green's function, Neumann's function, and eigenfin-tions of a linear
elliptic partial differential equation on their domains of definition. The
importance of this question lies in the difficulty which is generally
encountered in the explicit calculation of such functions. Since elementary
formulas are the exception rather than the rule in the theory of partial
differential equations in an arbitrary domain, one turns to the investigation
of the properties of the basic solutions, and variational formulas exhibiting
the domain dependence of these solutions furnish one of the principal tools
of the investigation.

One of the most comrmon applications of the thecry of variation of the
Green's function, Neumann's function snd eigenfunctions arises in the study
of extremal problems for the capacity, virtual mass and eigenvalues of a doméin.
We are led to such extremal problems on the one hend in an attempt to estimate
these domain functionals in terms of the geometry of the domain, and on the
cther rand by the equivalence of the solution of particuler variational
problems with the existence anc uniqgueness of solutions of physical problems,

sucnh as the construction of free boundary flows. Exiensive investigations in



these two directions have been carried through for Laplace's equation in the
plane and also for other typical elliptic pertial differential equations in
two independent variables [2, 7, 8, 9, 18].

In this paper, we develop a rigorous theory of variation of domain
functions in spsce of three dimensions as well as in the plane. We not only
present an adequate mathematlcal discussion of the classicel Hadamard
variational formulas in space, but also generalize the so-called interior
variational method to three dimensions. We derive expressions for the second
variations of the capacity, virtual mass, and other physical quantities
already mentioned, and we deduce from them various interesting convexity
theorems for these domain functionals.

Our investigation of the second variation was motivated by the suggestion
of Max Shiffman that in cases where one can guess a domain for which e certain
combination of domain functionals is stationary, one might be able to apply
a minimax theory in order to prove that the domain in question actually
ainimizes that combination, provided one could show that whenever the first
variation of the combination vanishes the second variation is positive-definite.
This suggestion is based on the fact that on certain surfaces, corresponding to
two points whose heights are relative minima thers exists a saddle-point. While
we have not had any direct success with this line of reasoning, we have been
able to deduce a number of uniqueness thecrems from convexity properties of the
domain functionals which are based on the second varistion. One should mention
in this connection the work of Friedrichs [ 61, who proved by such a method
the uniqueness of certain free bcundary flowa.

In Chapter II we define intericr variations of a 3 -dimensional domain D

by means of differentiable mapping: cf D depending on a small parsmeter € .




The first order shifts in terms of € of the Green's function, Neumann's function
and eigenvalues which result trom this variation of D are calculated rigorously

by referring all varied quantities back to the original domain D through the

infinitesimal mappings. The study of the domain dependence of these hssic
functions for a given linear elliptic partial differential equation is thus
transformed into an investigation in the fixed domain D of the depsndence of
the solution on the coefficients of the equation. Such an investigation is
readily carried through by Hilbert's classical method based on integral
equations [11]. The variational formulas which result, for example, in the
case of the capacity, are given in terms of domain integrals involving the

Maxwell tensor of the relevant electrostatic field, and their validity does

not depend upon strong smoothness assumptions on the boundary of the domain.
However, when the boundary of the domein is sufficiently smooth, our interior
variational formulas yield by application of the divergence theorem the classical
Hadamard variational formulas, for which we thus obtain a strict derivation.
Our 3 -dimensional variational theory collapses easily by specialization to
the better known theory of variation in the plane.

Once in possession of a rigorous proof by the Hilbert method that we can
expand the varied domain functions in powers of £, we are justified in
employing the perturbation method to calculate the second variations of
these functions. We do this in Chapter III and obtain interesting second
variation expressions for the capacity, virtual mass and eigenvalues corresponding
to various particular ways in which we can shift D. A number of convexity
theorems for these domsin functionals are the outgrowth of this investigation.
For example, if we shift the surface o D along level surfaces of a harmonic

function U, the capacity of D with respect to a fixed interior point turns out



tc be a convex function of U. Similarly, the capacity of a convex domain D

is a convex function of a parameter which gives a variation of D defined in

terms of the support function of the surface of D. These convexity theorems

are applied to establish extremal properties of domains for which it is known
that the capacity is stationary under certain constrained variations, and thus

g number of uniqueness theorems are deduced. Such a theorem can be obtained also
for the problem due to Evans [ 5] of finding a surface of least capacity
enclosing a given curve.

In Chapter IV we specialize our variational theory to the case of two
independent variables in order to apply it to show the existence of vortex
sheets in axially symmetric, irrotational flow of an incompressible fluid.

An indication of these results will be given in the next section, where we
sketch heuristically an extremal characterization of vortex sheets in 3 ~-dimen-
sional space without symmetry of any kind. In the axially symmetric case, the
convexity of the virtual mass in dependence on the domain can also be used to
discuss the extremal characterizaticn of a vortex sheet.

Chapter V is devoted to the study of the eigenfunctions and eigenvalues
of the vibrating membrans. Using the second variation, me show that under
certain conformal mappings of a domain depending on a suitable parameter, the
inverse square of the principal frequency of the domain becomes a convex
funciion of the parameter. This theorei 1s applied to shos that for fixed
principal frequency of a domain, the capacity with respect to an interior
point i3 a maximum when the domain is a circle about the point, a theorem due

n
to Polya and Szego [161. .



2. Vortex sheets.

In order to motivate the detailed study of variational methods in 3-
dimensional space which follows in later chapters, we treat heuristiecally in
this section a 3 -dimensional extremal problem for the virtual mass of a
steady irrotational flow of an incompressible fluid whose solution yielas
a flow past a vortex sheet. We have only succeeded in proving the existence
and uniqueness of vortex sheets from this extrémal characterization in the
cases of plane and axially symmetric flow, but a formal discussion of the
general 3 -dimensional case, which is the one of interest in aerodynanmic
theory, should indicate the direction in which furtiier development of the
material in this paper should be pushed.

Let C be a simple closed curve in space and let ). be a closed surface
which intersects every curve looped around C and bounds an infinite domain D.

Let b P(x,y,2) be & harmonic function in D with the expansion

o]

(1.2.1) ¢ = x"“ggy’*... , r"'='x2+y2+z2 ,
- ,

near infinity and with an inner normal derivative which vanishes on 27,

-

(1.2.2) g .o
o
The function CP represents the velocity potential of a steady 3 -dimensional

flow past 2. of an incompressible fluid in D. The coefficient X in (2.1)
13 related to the kinetic ensrgy of the flow and we shall call it the virtusl
mass of 2. with regpect to the x direction.

We show formally thst if, for a fixed curve G, the surface 27 is so chosen
that

(1.2.3) X = minimua

Then Z:.reduces to a vortex sheet enclosed by the curve T,



¥*
Lot 22 be another surface spanned through C whose normal displacement
87/:from 27, measured frcm any point of Z:; iz Infinitesimally small. We
#*
¥*
denote by B +the infinite domain bounded by fﬂ', we denote by CP the velocity
potential of the flow of the forn (2.1) past E:., and we denote by CK the
virtual mass of this flow. We attempt to estimate the difference c{ -
in terms of the ncrmal shift S
*
If R denotes the surface of a large sphere enclosingZ andZ , WO

find by Green's theorem that
*

(1.2.4) X - =--1—m a ,
X L @W - 9" v

gince the integral is independent of the radius of the sphere R. Here 47

denotes the surface element. A further application of Green's theorem yields

+ =L . 2
(1.2.5) K- =m_ ff(vqo) dT 4W&&§WCP Vo1 at
D-D" D

where dT is the volume element. From (2.5), it i1s clear that the first order
*
term §A of the difference X ~ (X, considered as a functional depending on &7/,
is
g L N A 2
(1.2.6) %= |V (VPY Svac
23

Let us now suppose that 23 is an extremal surface for the minimum problem
(2.3). We first conclude that ¥ must reduce to a single shest containing no
interior points, since according to (2.5) the virtual mass (X decreases
monotonically as the flow region D expands. Secondly, we notice that (‘7QP)2
must have identical values on both sides; of thz extremal sheet )., since the
first variation (2.6) must vanish for every normal shift of the extremal surface,

and since a normal shift of the sheet . corres ponds to values of &7/ which



differ in sign only on the opposite sides of 2>. Thus in the extremal case,
(VCP)Z is continuous across 2a, which implies by Bernoulli's law,

(1.2.7) % (VCP )2+ p = const. ,

that the pressure distribution p is continuous through 7. But the continuity
of the pressure p is precisely the physical condition which characterizes 2
as a vortex sheet. In space, the velocities on the two sides of a vortex
sheet are permitted to have, within the tangent plane of the sheet, quite
unrelated directions, but their magnitudes must be equal. In 3 -dimensional
aerodynamic theory, such sheets are introduced to account for the 1lift and

drag produced on an airfoil. We have succeeded here in connecting this

concept with the minimum energy principle (2.3).



CHAPTER 11

THE METHOD OF INTERIOR VARIATION

1. Generalities.

We want to develop in this chapter the theory of the variation for
Green's functions with respect to linear partial differential equations.of
eliiptic type under a variation of thair domain of definition. For the sake
of simplicity we shall treat the case of three independent varisbles xy
(1=1,2,3) which vary in a domain D0 of three~dimensional space. Let
p(xi) be a continuously differentiable iunction in this bhasic domain Do

and consider the partial differential equation of elliptic type

2

(2.1.1) Llul = vV u- pu =0 , v2 - i 2—5 .

i=1 axi

Let D be a subdomain of Do and let us assume, at first, that D has a
smooth boundary C. We assume further that the only solution of (1.1)
in D which vanishes on C is the trivial solution u==0. In this case, there
exists a Green's function of the domain D with respect to (1.1). This Green's
function G(P,Q) (with P =x,, 9= 5‘1) is characterized by the following
three requirements:

a) For fixed Q¢D, %(P,Q) is a solution of (1.1) as a function of P
and twice continuously differentiable in D. except at the point Q.

b) The function G(P,Q)-Z;?‘%Tﬁjéy is continuous in D, has uniformly

bournded first derivatives with respect tc P, except at P=Q, and its second

derivatives grow at most like r(P,Q)wl if P approaches Q, where
3

(2.1.2) 1,02 = ) . (x, - ‘fx)z
i=1 b

¢) G(P,Q) vanishes for PEC, Q€D,



It is well known that these rsquirement. determine the Green's function
in a unigue way and that the Green's function satisfies the symmetry condition
(2.1.3) G(P,Q) = G(Q,P)

Thus, in particular, Green's function is a solution of (1.1) in dependence or
the parameter point Q also.

If u(P) is an arbitrary solution of (1.1) in D and is continuous in D+C,
it can be expressed in terms of its boundary values on C by means of the

Green's function in the form

(2.1.4) u(P) =‘H-%G§3*9)- u(Qdary
Q
c

where 7ﬁQ denotes the interior normal at the point Q with respect to the
surface C and where dOjQ is the surface element at Q.
We can also solve the inhomogeneous differential equation
(2.1.5) Pu- pu = f(xi) , u=0onC |,
if f(xi) is Hglder continuous in D+C. In fact, the solution u{P) can be

rapresented in the form

(2.1.6) u{P) = JJ]G(P,Q)f(Q)d Tq )

where dﬂTQ is the volume element at the point Q.

This result leads to an interesting interprststion of the guadratic form
(2.1.7) rlf,f] =MU_(G(P,Q)f(P)f(Q)d’CPd'CQ
D D
In fact, we obtain from (2.1.5) and (2.1.6) by means of Green's identity

(2.1.8) rie,e] ﬂbq[(Vu)z + put 14T
D

The right~hand side is just the Dirichlet integral of u with respect to the

difforential equation {1.1). In the special case that p(x,) is non-negative
L
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in D, the Green's function G(P,Q) is the kernel of a positive-definite form.
This fact makes the theory of (1.1) particularly simple for the case of a

non-negative coefficient p(P).

2. Interior variations.

We consider a three times continuously differsntiable vector field in Do

(2.2.1) 5, = Si(xj) i,j=1,2,3,
and the transformation
* X
(2.2.2) x, = xi(xj; £) = X * ESi(xj) ,

which depends on the real parameter £ . Given a proper subdomain DC D,» we
may choose a bound b(D,Do) > 0 such that for |€]/< b(D,Do) the domain D is
mapped topologically onto another proper subdomain D*C Do with smooth boundary
surface C*. At the same time, we can choose b(D,Do) go small that all domeins
D* obtained still possess a Green's function G* (P,Q) with respect to the differ-
ential equation (1.1). Our principal aim in this chapter is to express G*(P,Q)
in terms of the original Green's function G(P,Q) and the transformation vector
field (2.1).

For this purpose, we refer the function G*(P,Q) back to the original

domain D. Let P*(P)Ex:(xj), Q*(Q)E %\:(?j) and consider the function
(2.2.3) g(P,Q; €) =G [P (P),Q (@]

which 1s well-defined in D, twlce continuously differentiable except for P=Q,
and which vanishes if either argument point lies in the boundary surface C of D,

¥* *
Let u (P) be an arbitrary solution of (1.1) in D and let

(2.2.4) u(P;€) = u (P (P))
be the corresponding function in D. We have
* 3*) ox
(2.2.5) 2u Z —afj- -t ,  i=1,2,3
axj i=1 2 1 2x

o,
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%
The function u (P ) yields a stationary value to the Dirichlet integral

* 2 *¥2 * E : 3x
(2.2.6) j 3 [((Vu) +pu W@JT -ﬂ} ( ax )2+ puz 8dt
L 1 2x j
% 2%
for all functions in D with same boundary values on C . Here
* * *
a(xlsxzy

(2.2,7) 8(x,) =
" 2(x,, ?,xT

is the Jacoblan of the transformation (2.2). Consequently, the function
u(P; £ ) must satisfy the Euler-Lagrange equation for the right-hand integral

in (2.6). We introduce the notation

(2.2.8) = 9(xy) = ,
v ’axj axj ey

(2.2.8') {O(xi) = Q(Xi)p("i) ,

and we obtain the following transformed differential equation for uf{P; €& ):
3

(2.2.9) Lo(u] = if}; 32 Uy B2 pu =0

This equation is satisfied, in particular, by g(P,Q; &) in dependence on P
for PED, P£Q.
The differential equation (2.2.9) was obtained as the Euler-Lagrange
equation with respect to the Dirichlet integral
3
(2.2.10) Qelu] --@‘:1;’1 Byy -%_Z —g—f-k * P T

This integral reduces obviously to

(2.2.10") Qo[u] =jﬁ[(‘7u)2 + pu:2 T

in the case € =0; Qa[u] will play an important rols in the subsequent

considerations.
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The preceding transformation of (3.1) into (2.9) permits us to consider
the Green's functions of varying domains with respect to the fixed differential
equation (1.1) also as the Green's funciions of the fixed domain D with respect
to the varying differential equation (2.9). In this way, the dependence of
the Green's function on the parameter € can be investigated in a more conven~
ient way; in particular, the general theory of linear integral equatiuns can

now be brought into play in an easier fashlon.

3. The parametrix.
Wo have to study the character of the singularity of g(P,Q; £) if P moves

H %
to Q. We refer the distance function r(P ,Q ) back to the domain B and find

3
(2.3.1) P, Q) = (DL (x - ?*)2)1/2
j=1 3 J
i’ 1 f: ?a”(?i)
] [i’k"l " Ej)(xi_ gi)(ﬁ_ gk)+2 1,k =1 afﬂ ‘Xffi"*‘k" Ek“’%'?ﬂ)
+o(::-‘*)]1/2 ,  r=r(P,Q) ,
with 3 . .
S 2% 2%
(2.3.2) aik(xﬂ) 8;}:1 5 3% .;

* ¥ ...l._ *  * -1
By virtue of the continucus differentiability of G(P ,Q )- = »{P ,Q )
and the character of the transformation (2.2), we can assert that

1
4t (P (P),Q (Q))

(2.3.3) g(P,Q;g) = + h(P,Q;¢) ,

where h(P,Q; £) has continuous first derivatives in D,
# % ..1

7= r(F Q)

as g{P,Q; €) in the sense that the difference function h(P,Q; € ) is continuously

The function has for P near Q the same asymptotic behavior

differentiable in D. It can sven be shown that the second derivstives of

h(P,Q; € ) become infinite at most like r(P;Q)ml if P approaches Q. We can
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construct another function of P and Q which is somewhet simpler and has the

same asymptotic behavior. In fact, the fumction

3
1.l } . -T2
1,ksl

satisfies our requirements, as is irmediately seen by series development near
the point Q.

We define now the parametrix functions s(P,Q; £) with respect to the
differential equation (2.2.9) as followms:

a) The parametrix s(P,Q;€ ) is a symmetric function of both arguments.

b) We can write
(2u3o5) S(P,QEE) = SE(P)Q) +R£(PyQ) )

where RE(P’Q) is twice contlnuocusly differentiable in D for P#Q, has
uniformly bounded first derivatives for P#Q, and has second derivatives
which become infinite at most like r(P,Q)% for P->q.

e¢) The parametrix vanishes if, for fixed Q€ D, the argument point P
lies on the boundary surface C.

The construction of such a parametrix can be performed in varioua-ways.
The concept of the parametrix was introduced by Hilbert [117, who applied
it to study the dependence of solutions of partial differential equations on
parameters which occur in the coefficients of the equation. While it may be
difficult to obtain a fundamental solution for a given differential equation,
the constructlion of a parametrix requires no comparable efforts, since only

the boundary condition and the singular character have to be observed.

4. The integral equations for g(P,Q;€).
Let Q [u,v] be the bilinear form belonging tc the quadratic functional

(2.2.1C). Let u and v be two functions which are twice continuously



differentiable in D+C. We have by Green's first identity

(2.4.1) agln,v] = - |[vr. (v, Vo - [[frrgtunar
c D
where 3
(2.4.2) P (V) = 0. A v 2%
e £, k=1 ik "1 Bxk

and 7/ is the inner normal to C with components ‘I/io From this result

follows immediately Green's second identity

(2.4.3) ﬁ.‘ (vLa[u]-uLe[v])d’C = mﬂ(vPa(v,Vu)- uPE(V,Vv))dG" .
b c

Weo apply, at first, (2.4.1) to the two functions
(2.4.4) u= g(P,Q;€) ’ v = g(P,Rj 80) » Q,RED

We have to modify the identity in the usual way by eliminating from the domain
of integration small spheres around the points Q and R where the integrand is
singular. If we let the radii of the two safety spheres tend to zero, the
surface integral over the sphere around R will disappear, since v tends to
infinity only like the reciprocal of its radius, while its surface area tends
to zero like the square of its radius. The contribution of the sphere around

Q is given by

3
o Eﬂaﬂ(gyakz(fj)yiyj
(2.4.5) g@QR5E) 7- : aw

if 3/2
(i — ik(cij)v )

where dw is the surface element of the unit sphere U around the point Q.

From definitions (2.8) and (3.2) follows
3

(2.4.6) 1;2;1 b (S el T = 8,0(%)



..,15.=

Thore 1s no restriction of generality if we assume

i’ i

2
(2.4,7) L 8,.(5) vy = A, ¥
Gt 31 "% (%% ’

that is, that the quadratiec form is at Q on principal axes. It is well known

from the theory of the attiraction of ellipsoids that
@

(2 oll-¢8) J(ay) -j‘g ) d = 277 j -fdi—-u —
. 2 2.1/2 31
(4, 7]+ 8,5+ 8,95] $ N8 ) (a,t) (a,0t)
Hence, we obtain easily
3
? -
(2.4.9) ; —55; - - %E 7 @g: 5575 = ~2TT- (8,40, 1/2
-1 g AV A, 5 A ]
Thus, we have
-1 du . -1
(2.4.10) zm.“ 3 ) e(%‘j) .
U 3/2
(2. ey (SP 7 %)

1,ksl
and the contribution of the sphere around Q becomes simply g(Q,R; Eo) .

Wo have further Ls[u] =0 in D, whence we derive finally
(2.4.11) g(Q,R;?—c) = Q. Le(P,Q; £),8(P,R; Eo)]

In exgsctly the same way, we find

(2.4.11') g(Q,RS 8) = QE fg(P,Q;i ),g(?,ﬁ; Eo)] .
o
We define now the difference terms
( e,e:o)
(2.4.12) Ay =4, (x5 8)- 4, (x5 €) >
(g,€)
P - /o(xy; £)- ﬁ(xy; E‘,o)

and ths corresponding bilinesr form

(€, ) 2, (g,e) (€,e)
(2.4.13) E = ° [u,v] = Z A, o 2u 2y, p o o

1 e LK 7%, 2% '
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Subtracting (4.11) from {4.11'), we then obtain

(g,€)
(2.4.14) g{Q,R; £ ) - g(Q,R; 80) = -1mE © [g(P,Q5£),g(P,R;5€ o)}d’C .

This is an integro-differential equation for the Green's function g(Q,R;S)
in terms of the Green's function g(Q,R; ig)u It is very simple and symmetrie,
but has the disadvantage that the coefficients of the integro-differential
equation are highly singular and thus this equatlon does not exhibit eclearly
the continuous character of g in dependence on &.

In order to overcome this difficulty, we apply now (4.3) with

(2.4.15) u=g(P,Q€) , v=s(P,R;€) , Q,ReD ;

where s is any admissible parametrix. We have .o exclude again the singular
points Q and R by aafety spheres ‘and to pass then to the limit of vanishing
radius. As before, we find easily that the contribution of the spheres around
Q and R are s(Q,R; £) and -g(R,Q; €), respectively. Using the fact that g is
a solution of (2.9) and is symmetric in its arguments, we thus obtain
(2.4.16) g(Q,R;E)~s(Q,R3E) 'm g(P,Q; € )LE[S(P,R; E)Jd’cp

D

This equation is an integral equation of the second kind for g{Q,R; € ) with

an admissible kernel for the Fredholm theory. In fact, we may put
(2.4.17) Lels(P,Rs€)7 = Lgls(P,R; €)- g(P,R;E))

and by dofinition of the parametrix the second derivatives of g-g become
infinite of at most the same order as r-(P,H‘.)ml if P—>R., However, we want

to transform the integral equation into such a form that it may be resolved by
a Neumann's series.

For this purpose, we apply (4.3) again with

(2.4.18) n=g(PQ€) , v=g(PRE )-s(PR5€ )
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Observe that v has now bounded first derivatives in D, even near the point R.
Hence, there is no contribution from the safety sphere around R and we obtaln,
since Ls[u]=(),

(2.4.19) g(Q,R; € )-s(Q,R; g) = TIHLa[g(?,R; € )-s(P,R; g )1g(P,Q;€)dcy .
D
Subtracting (4.19) from (4.16), we obtain

(e,e)
(2.4.20) g(Q,R;€) - g(Q,R;eo) = s(Q,R;ﬁ)-s(Q,R;E°)+MK >0 (P,R)g{P,Q;€)dc, ,
with D
(e,eo)
(2.4.21) K (P,R) = L [g(P,Rs€ )1~ L. (g(P,R;€ )1+ Lela(P,R;8) - s(P,R;5 )] .

o
Up to this point, no particular assumption was made concerning the dependence

of the parametrix upon the parameter £ . We observe that the aik(xj;s) depend
analytically upon € and that we can assume without loss of generality that
the parametrix depends on € in a sufficiehtly smooth manner. Under this
(e,8)

assumption, the kernel K is small of the order € - eo, except near the
point R, where it becomes infinite. But we may write

(e
(2.4.22) K °° (P,R) = Lelg(P,R3€ ) - s(P;Rs€ )1+ L ls(P,R;8) - g(P,R5E)]
and in view of the characteristic property of the parametrix we may conclude

(€,€,)

that K {P,R) becomes infinite at most like I«(P,R)‘"1 if P—>R. TFor

IE-EOI small enough, the Neumann's series for the reciprocal kernel of

K(E’€°) will converge.

Let us put
(2.4.23) \S(Qsﬁ; e, 60) = g(Q9R§ 80) + S(QsR; E)- S(Q9R5 EO)
We have
(¢,£)
(2.4.24) K % (QR) = LL¥(QR; &, € )3

and the Integral equation
(2.4.25) g(QLR3E) = ¥ (Q,R5%, ¢ ) +_ﬂ Ll ¥ (PsR;€,€ ) 1g(P,Q;€)dTy
D

for the unknown g(Q,R;€). This integral equation is of the Fredholm type

and admits resolution by a Neumann's series.
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We might have chosen s3(P,Q;® ) to depend even analytically on €. This
choice is of interest in the case that the coefficisnt p(xi) of (1.1) depends
analytically on its variables. In fact, we can then assert that K(E’eo)
depends analytically on £ and we have the following result: If p(xi) is an
analytic function of the x,'s, the Green’s function g(P,R; € ) depends analytically
upon its parameter € .

Under our more general assumptions, we can only assert that g(Q,R;E) is
continuously differentiable with respect to €. For this purpose, we have to
assume only that the parametrix depends differentiably on £ . We divide the
identity (4.20) by (€E- ao) and pass to the limit €= € . We see immediately
that the partial derivative of g(Q,R; £) with respect to the parameter € exists

and satisfies the equation

(2.4.26) Q-g%'ei‘—e—l = ag_(éo,%g_‘_-e_) +S.“L;[g(r',a;€ )1g(P,Q; € JaT

D

3

*ﬁ(L [-a—g-(-ag-’g-‘-&llg(ma; £)aTy

where

3
24
(2.4.27) Lglul = PN 2 [ —ik 2uy_ 22

We see also from the integral equation (4.20) that the first partial
derivatives of g{(Q,R; € ) depend continuously on € . Using this fact, we can

divide the identity (4.14) by (€ - &o) and pass to the limit € = 80; we find

(2.4.28) _Z__g_(_%%,_&) = -i“ Eé[g(P,Q; £),g(P,R; € )']d’CP ;
D
where Eé[u,v] is the bilinear form
3 - .
2L, E)
/ . 2 ) Su 2% i
(2.4.29) Eclu,v] i%l Y3 Aik(x;’ £) %, 2%, + oY .
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Formula (4.28) is not only more symmetric than (4.26), but it has, moreover, the
advantage of being independent of the choice of the parametrix. It is a typical
variational formula, expressing the changs of the function with the parameter

in terms of the function itself and its partial derivatives with respect to its
arguments. The case € =0 is of particular interest for most applications and

will be considered in detail later on.

5. Scme inequalities.

We return to the integral equation (4.20) and observe that the resolution
by a Neumann's series leads to a development of g(P,R;E ) in terms of increasing
order in (£ - E,o). We obtain thus a numerically convenient formula for
determining the Green's functions of near-by domains with an arbitrary degree
of approximation.

We want to point out one feature of this development which leads to interesting
inequalities in an important special case. Iterating (4.25), we obtain

(2.5.1)  g(@&,R;€) = JF(QR; €, € ) +5§SLE[5'(P,R; €,€)1¥(P,Q; €, € JdTp
D

+4,\ESQSLE[6‘ (PsR; € 9 EQ)JLE[ E(M:Q; Es Eo)]g(PsM; £ )d’CPd’CM .
D D

In the case that the coefficient p(xj) of the differential equation (1.1) is
non-negative, we observed in Section 1 that G(P,M) is a positive-definite
kernoly by definition (2.3) the same is then true of g(P,M;€). Hence, the
last double integral in (5.1) is non-negative and we are led to the inequality
(2.5.2) g(Q,Rs€ )= Y (Q,R; €, Eo) + L[y (P,R; €, &o)] J(P;Q; €, Eo)d’cp

D
We can generalize this last inequality as follows. Let Q, be a set of N points

in D and Azl be N arbitrary real numbers. From the positive-definite character

of the kernel g(P,M; €) and the identity (5.1), we can then derive the inequality
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N
(2.5.3) 2;1 [g(Qi,Qk;S)mJ(Qi,qk;a,so)])\ixkz Le{hlnat

D
where
N
(2.5.3)  B(B) = )L p(PQ5E, E) A,
i=1

These inequalities bscome particularly simple if we choose the parametrix
s(P,Q; £) in such a way that s(P,Q; €°)= g(P,Q; Eo). In fact, in this case

we have by definition (4.23)
(2.5.4) §(QB; €, € ) = s(QR;€) .

The inequalities (5.2) and (5.3) are sharp,since we obtain equality if we

choose s{P,Q; £)=g(P,Q;€). ll
It is not difficult to derive these inequalities in & direct and elementary

way, but it should be observed that they are only cne set of a great number of

estimates provided by the integral equation (4.20) in the case of a positive-

definite Green's function. For example, we can iterate (5.1) again and can

express g(Q,R;€) in terms of known quantities and a remainder integral

(2.5.5) &&“X“SW‘LE[ P (PR) I [y (M,Q)IL L (T,P)IL,[yr (S,M)1g(T,S; € ddrpar drgdey
DDDD

which is again non-negative. Iterating the integral equation for g(Q,R;€)
in this way, we can approximate the unknown function arbitrarily and with a
remainder term of non-negative value. Each approximation leads at the same

time to an inequality for the desired Green's function.

6. Vardational formulas and variational tensors.
Thus far we considered the parameter € in the transformation (2.2) as a
sufficlently small but finite quantity. We shall now obtain considerable

simprifications in our formulas if we treat ¢ as an infinitesimal, that is,



if we retain in all our formulas only terms which are of the first order, at
most, in €. The formulas thus obtained are indeed variational formulas, since
they determine the Green's functions of domains which are in an infinitesimal
neighborhood of the original domain D, belonging to £ = 0.

We calculate at first the coefficients Aik(xj; €) up to the first

order in £ . Since %

2x 28,
—3 . —ad
(2.6.1) 5% Sij+ € 37 ,
4 i
we have in the required degree of precision
3
(2.6.2) o(x,) = 1+& PN -5—1 + o(€)
i=1 i
and >
ax S
(2.6.3) —d 2§, .- =L+ale) .
3 ij Jx.
xj b

Hence, using definitions (2.8) and (2.87), we find

3
Z ’asjm Bsi QSI_E

(2.6.4) Aik(xj;f,) 5,87 5, L % Bv, " +o(€E) ,
3
(2.6.4") Plagi€) = plx)+ € JZ 32; 8y ol2)

Now we are ready to derive an elsgant variational formula from the

jidentity (4.14). We define the "variational tensor"

(2.6.5) T (p.QR)QMMMEM+m&M
T ik ® 22X 2%, CE 2%,

- ng(PQQ;O) . vpg(P,R;o) gik s

and using 1t, we put (4.14) in the form
(P)
(2.6.6) g(Q,R;€)- glQ,R50) = € B 1 (F3QR) ——i——
k‘=l ik 2%

3
T 3% (pS, )e(P.Q50)g(P,Rs. Bdr o) .
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The variational tensor Tik(P;Q,R) will play a central role in the sequel.,
It is based only on the original Green's function g(P,Qjo) and is to be
gonsidered as known. The tensor is symmetric in its indices as well as in
its dependence on Q end R. For Q=R the tensor becomes a Maxwell tensor of
the type frequently used in electrostatics.

The trece of the tensor is

3
(2.6.7) T(P;Q,R) = :[_:1 T (P5QR) = Vg(P,Q50)- Vg (P,Rs0)
We verify easily the following identitys
3
(2.6.8) ki_ 1 T (P3QR)T 5, (P3Q,R) =

L1 (ps , ; :
3IT(P;Q,Q)T ; (P5R,R) + T(P3R,R)T, ,(P5Q,Q)

- T(P3Q,R)T, ,(F;Q,R) + SijT(P;Q,Q)T(P;R,R) ,
which reduces for Q=R to

o = ° 2
(2.6.9) lg Ty (BT, (P50,Q) = 6, T(P0,0)° .

This shows the important fact that the rows and columns of the Maxwell tensor
Tik(PsQ,Q) are orthogonal to each other.

So far we used only the formal structure of the variational tensor; now
we utilize the fact that the function g(P,Qjo0) satisfies the differential

equation (1.1) in dependence on each varisble. We find then easily

3
27T
E ik _ 2 . \
(2.6.10) L p(xj) 2%, [g(P;Q;0)g(P,R30) ] .

This simple differential identity permits us to bring the variational

formula {6.6) into the simple form




(2.6.11) g(Q,R;€ )~ g(Q;R;0) =
2
€ 2% ( . [Tika p(P)g(P,Q;o)g(P,R;o) Sik]Si(P))d’EP*o(a) .
S k=1 “Fx 1=
We have thus expressed the first variation of g(Q,R) as an Iintegral over
the domain D whose integrand is a divergence term. We assumed D to have a
smooth boundary surface C and may, therefore, transform this integral into =

surface integral over C. We make use of the fact that on C

(2.6.12) g(P;Qs0)} =0 Vpg(PsQ;o) - MW >
275

PeC
We observe further that the components of the tensor Tik(P;Q,R) become
infinite for P=Q and PR, Hence, we have to exclude these singularitiss
from the domain of integration by infinitesimel spheres and to take into
account their contributions. After an easy calculation, we find

(2.6.13) g(0,R1E€) - g(Q,R;0) = ﬂm 2e(B:Ei0) (¢ 5.2)a0
C

2p 27V p

= -

s
k=1 29,

3
w3 r2elllials ). 2e8ad 5 )3 o)

where S is the vector field with components Si and where the qk's and rk's
are the coordinates of Q and R, respectively.

It becomes now convenient to return to the original Green's function by
means of the correspondence (2.3). We denote by
(2.6.14) £8v = §v
the normal shift of C under the infinitesimal deformation (2.2) and obtain

up to higher order terms in €

. 2G(P.Q) 2G(P.R)
(2.6.15) & G(Q,R) = ﬂ 27, 27, SZ’PdG"P
¢
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This elegant variational formula was derived by Hadamard [10] in the case of
Laplace's equation for any number of independent variables. The more complicated
formulas (6.6) and (6.11) have the advantage, however, of being valid also for
domains whose boundary surface C is no longer smooth. We shall discuss this
extension of the formulas in the next section. Hadamard's formulas is frequently
used in variational considerations because of its great formal simplieity; it
leads often to a heuristic solution of extremum problems which must then be
established precisely by a finer technique which can, in general, be based on
the formulas of interior variation of the type (6.6).

We have connected in this =ention Hadamard's vsriational formula with the
theory of the variation of the Green's function in a fixed domain under the
variation of a parameter in the coefficients of the equation. This latter
theory is essentially due to Hilbert; it providss a simple proof for the
Hadamard formula and permits an evaluation of the error term arising from

neglect of the higher order terms.

7. Extension of the variational formula.

It is obviously necessary to extend the variational formula (6.6) to the
most general domain D in space for which a Green’s function exists. In fact,
if we are dealing with extremum problems for domains D involving their Green's
functions, we will have to characterize the extremum domain by varying it and
comparing its Green's function with that of near-by domains. In this way, we
will bu able to express analytically its extremum property in the form of
identities. But we are not sure, a priori; that the boundary surface C of the
extremum domain D is smooth; hence, we cannot apply the results of the preceding
section without getting rid of the assumption of smoothness on C. We will show

now in this section that the variationsl formula (AnlA) holds in the most



general case and that the formula (6.6) which has been derived from it in a
formal way is, consequently, always applicable.

Let D be an arbitrary domain in space which possesses a Green's function
G(P,Q) with respect to the differential equation (1.1). It is easy to see that
the deformations (2.2) carry D into a new domain D" which will also have a
Green’s function G*(P,Q) if € is small enough. We can then define in D the
functions g(P;Q;¢ ) as we did in Section 2.

Let Dn be a sequence of domains with smooth boundary surfaces Cn_which
converge to D in such a way that DnCDn+1C D. We denote by gn(P,Q; £) the
Green's function of D_ corresponding to g(P;Q;€). We can define gn(P,Q;E.)
as a piecewise smooth function in D by putting gn(P,Q; €)= 0 if either
argunent point lies in Dan. Putting

(207-1) u = g(PyQ; E) v o= gn(PgR; 80) 9 Q,Re Dn P

we can now obviously appiy the first Green's identity (4.1), and taking notice
of the singularities of u and v, we find

(207.2) gn(QoR; EO) - Qetg(PgQ; E);gn(PyR; EO)]

Now, we can pass to the limit n -— w; because of the well-known continuity
property of the Green's function, we obtain

(2.7.3) g(Q,R; 80) = Qcle(P,Q; €),e(P,R; Eo)] .

Thié is formula (4.11), valid now for the mest general domains which have a
Green's function at all. In the same way, we can prove the analogous identity
(4.11') and the desired formula (4.14) follows agaln by subtraction of the
two identities. Thus, the variational formula (6.6) has been established in
the most general case.

It is to be observed that we are using here the term Green's function in

the generalized sense, namely, as the limit of the Green's functions (in ths
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proper sense) of smoothly bounded exhausting subdomains. In general, it
cannot be asserted that the generalized Green's function vanishes at all
points of the boundary C of D. But it is necessary to use this concept if
we want to establish a useful functional snalysis with respect to the

differential equation (1.1).

8. Iwo independent variables.
OQur preceding results are in no way restricted to the case of three

indspendent variables, but can be generalized toc n variables if the nature of
the parametrix singularity is properly adapted. The case n=2 is of
particular interest, since the use of complex variables permits varisus
interesting simplifications in the formulas.

We start again with the differential equation

2
ZE:? 2
(208.1) L[u] = vzu"" pu - O 9 v2 = _.’a—_z- b
i=1 in

and we call G{P,Q) the Green's function of (8.1) for a plane domain D if it
satisfies the three requirements

a) For fixed Q€D, G(P,Q) is a solution of (8.1) as a function of P.

b) G(P,Q)'*E%;.log r(P,Q) is continuocus in D, has uniformly bounded
first derivatives, except possibly at Q, and iis second derivatives grow at
most like r(P,Q)-l if P approaches Q.

¢) G(P,Q) vanishes for PEC, QED, where C is the boundary curve of D.

We introduce again infinitesimal deformations based on a vector field
Si(xj) (1,j=1,2) and we introduce Green's functions g(P,Q;€) in the same
way as in Section 2. We obtain again the variational formula (6.6) with a
variational tensor (6.5); the only difference is that the indices i,k range

only over 1,2 instead of 1,2,3.
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There occur, however, as if by accident, remarkable relations in this

special case. We find

(2.8.2) T..(P;0,R) = 2g(P,Q;0) 2z(Punio)  2g(P.Q30) Pg(P.Rio)
e 11 > 7% 2% 2x D%

1 1 2 2

» = T22(P;Q3R)

T1,(PsQ,R) = 2&(Ps0:0) Fe(P.Rio) , 2g(P.0;0) 2g(P.R;0)
1217 0%s 2%y 2x, ?x, 2%,

- Tzl(PstR)

Thus, T 1k is a symmetric orthogonal tensor with trace zero; we have
2
2 2 13
(2.8.3) k§-:l Tilpe = 814 IVp(Ps0s0)1” [ Vpe(P,Rs0)] |

We introduce the complex differential operators

2 .12 2 2 .12 ., -2 -
(2.8.4) 2z 2(9xl-12x2) ’ 2% 2(91:1 iax) s 3= XX,

and we write (with P=z)

] - 22(P,Q10) 2g(PRs0) /] _ )
(2.8.5) Tll(P’Q’R) Re{ >z >z - T22(P,Q,R)
. - aggP,Q;oZ angzRiQZ .
le(P;Q’R) - Im 2 z 3z = T21(P,Q9R)

For the sake of uniformity, we collect alsc the deformation vector field
S,)(xj) into one complex function

(2.8.6) F(z,z) = Sl(x;j)+ i Sz(xj) .

The points P,Q,R are replaced by their complex coordinates, z,i‘ ’ "1,

respectively. With these notations,we can cast (6.6) into the complex form

(2.8.7) g(‘i yN3E)- g(‘”g, N30) = € ne{ﬂ[g 3_&(&5%19). ﬁz(.%;.éqz.sﬂ 2F(z.3)
D

2z
- 2g(z,§;o)g(z,7;o) “9?’2“ (?‘F)'ld’trz} +o(E)
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We recognize that the variational formula becomes particularly simple if
F=F(z) is an analytic function of the complex variable z. In this case

-g'g = 0 and (8.7) reduces %o
Z

—~
. en) = - . . 2.
(2.8.8) g(g, s £)- g(i, "(,o) 2Egg(z,§,o)g(z, 7,°)Reiaz (pF)}d’Ez

+o{g) .
If we agsume, in particular, p =0, we find 8g(‘§, r’()-O, which is the well-
lmown invariance of the Green's function of Laplace's equation under a conformal
mepping.

We can obtain from (8.7) a variational formula for the original Green's
function G(P,Q) connected with the fixed differential equation (8.1) and the
varying domalns D*. let G(P,Q) denote the Green's function of the original
domain and lst
(2.8.9) 5G(P,Q) = G (P,Q)- G(P,Q) * o(E)
denote the first variation of this Green's function, if the domain D is
transformed into D by a deformation {2.2). Then, we find easily from

(8.7) and Taylor's theorem

(2.8.10) SG(<§‘, ?) = ERe ﬁ[siﬂ%,g_la_%ﬁ?
D 2

-2G(z,<§)G(z,f?) —aa; (sF) Yoz, - 2F(1), ) 29_5%?&5_1 . 2F(§,-€-) _B_G_ég?ﬂ} .

9. Singular variations In the plane.
We saw in the preceding section that interior veriations based on an
analytic function F(z) lead to a particularly simple variational formula for

the Green's function. In the very important special case of the Laplace
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equation in the plane, which is closely related to the theory of analytic functions,
the simplification becomes even too great; since the Green's function is

invariant under conformal mapping in this case, we find only that the first
variation of g(P,Q;€ ) is zero. In order to obtain a more applicable variational
theory of conformal mappings and univalent functions, it proves useful to

consider a slightly more general class of deformations. These deformations

are based on a complex function F{z,z) which is analytic in the domain D
considered, except in a small fixed circle inside of D. The same type of

variation is also of interest in the case of more general differential

equations, as will be seen from the applications in Chapter IV.

Let z  be a fi-ed point in D and let K(E.,zo) denote the circle “
EEERES NE's P We assume J so small that KD and define
104

A - -

6z-z° > for zeD~-KX
(2.9.1) F(z,z)=

1 i lz-z_|° IZ-ZOIB |2~2 \4

= (6 Q.38 + 3 —=L—)  for z€K .
6z-2 o 3 4
L ° I P P

By easy calculations it can be seen that this deformation field is twice
continuously differentiable in D; i} yields a ons-to-one mapping of D into
a schlicht near-by domain. Thus, our general theory of variations applies.

We insert (9.1) into (8.10) and find easily

gG(Z ’E) BG(Z grz) ——
- 4 iA o , o - = 2_G
(2.9.2)  56(F,q) &Re{—rLB o e 5o zr(g,§)&_%_u
in Ty 26(8,n) 1 1o<“ 2. (plz,z) f
-2F(1, 1) 71 -3 | G(z,§)G(z,7) > e - L

Let us suppose that the argument points g and YZ lie outside of the

cirele K( E‘,,zo). Formula (9.2) represents then the first order changs of the
Green's function with respect to D and for the differential equation (8.1),

if the boundary C of D is mapped by means of the analytic function
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jd 2
(2.9.3) fz) = z+% i;:—f" ,
o

*
which is univalent on C. Bv tais mapping, C is transformed into a new curve C

*
which bounds a new domain D and (9.2) gives the change of the Green's function
undsr this variation.

Variations of the type

ict . 2
(2.9.3") z g+

z~'7,
have been used successfully in the theory of schlicht functions and are

called "interior variations" of the domain. The factor % which occurs in

(9.3) is unessential and has only been introducsd in order to permit & simple
continuation of the deformation into the critical circle XK(E ,zo) which
remains one-to-one inside this circls. We reformulate our result (9.2) in

the following way: Let (9.3') transform the domain D into D* and map the
points i and r{ into g* and rz*. Ir G*(‘g, Vl) is the Green's function of the
new domain D , we have

26(z ,5) 26G(z ,n)
(2.9.4) G(§ ?) ME Q)wlh{?w R ik ;22 ;ZT

-2{0 eiO(Jj G{z, ?)G(z "l) (M)dt'}*'o(fz) .

This result is obviously of particular elsgance in the case of the Laplace

squation (p==0), but is also useful in the more general case. Its main
advantage lies in the fact that no derivatives of the Green's function occur

under the integral sign.

10. Yariatlonal formulas for the Neumann's function.

We derived in Section 6 an interior variational formula for the Green's
function by using the identity (4.14) and the fact that g(P,Q; &) and its first

partial derivatives depend continuously on €. We can cerive in the same way
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analogous formulas for various other important domain functions related to the
differential equation (1.1).

We define the Neumann's function N(P,Q) for a three-dimensional domain D
with respect to the differential equation (1.1) as usual:

a) «(P,Q) is, for fixed QED, a solution of (1.1) as a function of P.

b) It has in D and at Q the same differentiability properties as the
Green's function.

¢) For fixed QED and PEC, we have

(2.10.1) 28(r.Q) 0

87/1,

Let us assume that for a glven domain D such a Neumann's function does
exist. We introduce the infinitesimel deformations (2.2) and obtain near-by
% 3
domains D with Neumann's functions N (P,Q), if €| is small enough. Let us

define in analogy to (2.3) the functions
(2.10.2) n(P,Q;€) = ¥ [F (P),q ()]

in the fixed domain D, and let us study their dependence on €. We observe
that n(P,Q; € ) is symmetric in P and Q, in view of the well-known symmetry
of the Neumann's function; it satisfies in each variable the differential
equation (2.9), since N (P,Q) satisfies (1.1) in D .

In order to establish the conditions which n(P,Q;& ) fulfills on the
boundary surface C, we make the following observation. Let U*(P*) be an
arbitrary solution of {1.1) in D* which 1s continuously differentisble in
D*+c*; let V*(P*) be continuously differentiable in D*+c*. We define in D
the functions

(2.10.3) w(P) = U IR (B)] , w(P) =V I[P (P)]

and find by (2.6) and (2.10)
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+* 5% % % »*
(2.10.4) SSS Q.lu,v1aT -S S (VU -VV +pu vV Jax .
*®
D D
We use now Green's first identity on both sides of (10.4) and observe that

* +*
u satisfies in D the equation (2.9), while U satisfies in D equation {1.1).

Thus, we obtain

*
(2.10.5) “S vP. [ 7,Vuldg = XS v ‘a‘ti'/; a .
G

+*
Y
Since v(P) is arbitrary, we obtain from this relation the identity

¥*
(2.10.6) p[v, Voo - 2L 40"
Y

which clarifies the meaning of the important linear functional Pa. Ve
obtain, in particular, the following boundary condition for the funciion

n(P,Q;€ ):
(2.10.7) P.lv, Vpu(P,Q;£)1=0 , for PEC, Q€D
If we now apply (4.1) with respsct to two functions
(2.10.8) uw=n(P,Q;E€) , v =n(PR; Eo) , QRED ;
we obtain by the same calculations as were already performed in Section 4
(2.10.9) n(Q,R; 80) = Qe[n(P,Q; € ),n(P,R; 80)] .

Interchanging © with E’o and subtracting the resulting formula from (10.9),

we prove finally the identity

(€,¢)
(2.10.10) n(Q,R; € )~ n(Q,R; Eo) =~|[lE  ° [(n(P,Q; €),n(r,R; 80)]6"CP

D
We do not enter here into the detailed proof that n(Q,R;€ ) and its first

partial derivatives depend continuously upon the parameter £ . We proceed
jmmediately to derive from {10.10) in a formal way the variational formula
for N(Q,R) =n(Q,R;0). We define the variational tensor for the Neumann's

funetion to bhe
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. _ 2N(P,Q) oN(P.R) , DN(P.Q) DN(B.R)
(2.10.11) Tik(P’Q’R) 9"1 2 xk ?xk 2 Xy
- VPN(PyQ) 'VPN(P:R) Sik ’

and we derive from (10.10) the result

25 ‘P)
(2.10.12)  n(Q,R;€ )~ N(Q,R) = gﬂ]{z ¥, (P3,R) i~

97,
512
- =£— (pS, IN(P,QIN(P,R) } T, + o(& )
k=] 3xk k 'tP
This is the fundamental interior variational formula for the Neumann's function,
which stands in complete analogy to formula (6.6).

The tensor L satisfles the same differential relation as the variational

ik
tensor T,. , namely
ik 3

—2_% (p. - 2. .
(2.10.13) ; 2 T Pm) < 50 2 tirneR)

thus, we may put (10.12) into the for

ﬁ 3 3
° - = ..Q— 1
(2.10.14) n{Q,R; ¢ ) - N(Q,R) Dk§-1: %, 12-: 43~ P(PIN(P,QN(P,R) SikJ

d Si(P))d'B'P" o(€)

Following through the same calculations as in Section 6, we obtain, by

integration and use of the boundary ecndition gi = 0 on G, the final formula

(2.10.15) SN(Q,R) -XS [VeH(P,Q) : VN(P,R) + p(P)N(P,Q)N(P,R)1 8 pdTp -
C
This formula corresponds to the Hadamard variational formula {6.15) for the

Green's function and plays a similar role.
We want to remark finally that the reasoning of this section van easily
be extended to the so-called Robin's functions of a domain D with respect to

the differential equation (1.1). A Robin's function is defined like the
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Neumann's function and the Green's function; but instead of the boundary

28

conditions G= 0 or 2y = 0, we have for a given positive function Qo on C

(2.10.16) 2—%‘5@) = ,J-(P)R(P,Q) , for PEC, QED .
P

In order to carry out the preceding reasoning in the simplest way,
it is convenient to vary the coefficient }A(P) together with the domain D

in such a way that the function

(2.017)  r(2,e58) = B [F°(P),Q (Q)]
satisfies on the boundary surfsce C the condition
(2.10.18) P.[ %, Vpr(P,Q; €)1 = tA(P)r(P,Q; €)

In this case, it is easily seen that the identity (4.14) holds also for

r(P,Q; £). Hence we can obtain the same formalism as before. On the other

hand, it is not difficult to derive variational formulas for the Robin's function
of a Pixed domain and a fixed differential equation, but with varying coefficient

\t(P). In this way, the most general variational result may be obtained.

11. Ihe harmonic Neumann's functlen.

The results of the preceding section are not immediately applicable to
the case of the Laplace equation
(2.11.1) Va =0

since in this case no finite domain possesses a Neumann's function 1ln the
above sense.

It is customary to define the Neumann's function N(P,Q) in the harmonic
case by the following four requirements:

a) N(P,Q) is harmonic for Pe D, except for a pole at Q.

b) N(P,Q)-Z%; r(F,Q)-l is harmonic at Q.

-
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¢) For PeC, Q€D, N(P,Q) has a constant normal derivative.
d) We have the relation
(2.11.2) SSN(P,Q)dG“P =0 , Q€L

C
The last condition is necesgsary if we want to ensure the symmetry of the

Neumann's function in dependence on its two argument points. We have by

Green's theorem the identity

(2.11.3) \”\m dg, =1
G

ovp P
and, since the Neumann's function has a constant normal derivative for fixed Q,

we can sharpen condition ¢) to the statement

m&l - A(G)-l

22, A(C) = surface area of C.

(2.11.4)

’

This result shows that the constant value of the normal derivative is

independent of Q and that for any two points Q and R
(2.11.5) —f,%tn(r,m-n(r,a)]-o , PeC, Q,RED .

The function N(P;Q,R)=N(P,Q)- N(P,R) is the nearest approach to the general
Neumann's function concept of the last section. It has only the inconvenience
that we need for its definition the normalization (11.2) for its components,
which cannot be extended to domains with more complicated boundary surfaces.
We introduce, therefore, the function

(2.11.6) N(P,W;Q,V) = N(P;Q,V)- N(W;Q,V)

= N(P,Q) + N(W,V) - N(P,V) - N(W,Q)

= N(Q,V;P,R)
which is symmetric in argument and parameter points and satisfies the following

four conditions:
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a) N(P,”;Q,V) is harmonic in P and W, except at @ and V.

©)  N(BW;Q,7)- 7ho (r(P,@) 7 o p (W) 7o (P17 - £ (1,0)7] 2o regular
and harmonic at Q and V.

e) N(P,W;Q,V) has for fixed Q,VED the normal derivative zero on the
boundary surface GC.

a) N(P,P;Q,V)=o0
It is easily seen that these four conditions determine N(P,¥;Q,V) in a unique
way and may be taken as its definition. Most formulas of potential theory
become more elegant if this function is used. In the case of two independent
variables, the corresponding expression is closely related tc the symmetric
integral of the third kind on a closed Riemann surface, obtained by completing
the domain D considered through addition of its double.

We night obviously define a function N(P,¥;Q,V) by

(2.11.6') N(P,¥;Q,V) = N(P,Q) + N(W,V) - N(P,V) - N(W,Q)
also in the case of the general differential equation (1.1), although its

role is rather unimportant in this case. Let
X W * _*

(2.11.7) n(P,WQ,V;E) = N (P,H 3Q ,7)

%
be the corresponding solution of (2.9) obtained by referring the function N

*
of the varied domain D back to D. Ws introduce the function
(2.11.8) N(P;Q,R) = N(P,Q) - N(P,R)
and the variational tensor

(2.11.9) T, (BRM0,V) = T (B3R,Q)+ T (p39,1)- T, (PsR,V)- T, (P5W,Q)
2 2 2
w —— N(P;R,W) ag N(P;Q,V) +'§'—' N(P;R,W) 759;; N(P;Q,V)

X,
i < c

- VPN(P;R,W)- VPN(P;Q,V) 511:
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We then deduce immediately from (10.12) the result

(2.11.10) n(R,W;Q,V; £ ) - N(R,W;Q,V) =
[ ot 372
3 T, (P V)=t (pS )N(P;R,W)N(P;Q,V)}arc +olE) .
S (e 0% gwl 9% K P e

In this formula, we mgy pass to the limit p =0 because of the existence
of a Neumann's function N(R,¥3Q,V) in the case of the Laplace equation. We

then obtain

(2.11.11) n(R,W;Q,V; € ) - N(R,W;Q,V) =
3 5. (P)
EﬂS Z Tik(P;R,W;Q,V) —5’-— dT:'.P+o(€)
W 4kl *x

This formula is the basic interior variational formula for the Neumann's
function of Laplace's equation. It may be extended to the mosi general
domains D for which the usual generalized Neumann's function exists.

We derived in this section the variational formula (11.11) by a limiting
process from the corresponding formula in the general case (1.1). It is
obvious that this procedure was only followed for the sake of brevity; one
may derive (11.11) directly by the preceding method without such limit
considerations.

We may derive from (11.11) and the equation

2% (P.R.We -
(2.11.12) ;—:1 7 Tik(P,R,W,Q,V) 0

the Hadanard type variationsl rormula

(2.,11.13) SN(R,W;Q,V) = “VPN(P;R,W) . VPN(P;Q,V) SVPda'P .
c

It sheculd be observed that for arbitrary T&€D, we have
(2.11.14) Vel(P,T;R, M) = VO N(P;R,W)
so that the formula (11.13) might as weil be formulated in terms of the

gymmetric Neumann's function N(F,T;R,¥) alone.
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12. Capacity and virtual mass.
We shall now apply the results of the preceding sectlions in order to derive
variational formulas for some quantities of physical significance. We consider

the case of the Laplace equation and put

) G(P,Q) = —i- - g(P,Q)3
(2.12.1) (2.0) = 2= [ordgy - 8(P.Q)]
Since i G(P,Q) is regular harmonic in the domain D and positive on its

ATTT

boundary surface C, we have by the maximum principle
(2.12.2) g(P,Q) =0

The quantity

(2.12.3) c(Q) = g(Q,Q)

is called the capacity constant of the domain D (or its boundary surface C)
with respect to the point Q. Its negative,~C(Q), is the potential at Q of the
charge distribution which is induced on the conducting surface C by a unit

charge placed at the point Q. We obtain from Hadamard's formula (6.15)

2
(2.12.4) 5C(Q) = 417 SS(ﬁ—Ga%;Ql) gz/Pd(TP .
c

This formula shows the monotonic dependence of the capacity constant upon the
domain and can be used to obtain a clear insight into the dependence of C(Q)
on the boundary C. Of course, one can find also an expression for $C(Q) in
terms of & domain integral invclving the tensor Tik' Since this formula is
not very simple, we restrict ourselves to one important special casse.

We suppose that the domain D is the exterior of a surface G. The formulas
of Csction 6 are also valid in this case. If Q lies near infinity, we may
develop the Green's function in terms of the coordinates q of Q to obtain

(2.12.5) o(p,q) - HEL . 0(—15) , f?=9q§*‘q§*'q§
Foop
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Here, G(P) is a harmonic function of P in D except at infinity; it vanishes for

PE€ C. It is easily seen that G(P) has near infinity a development

S BRS¢ ) B N
(2.12.6) G(F) o= (1- =4 O(rz)]

C({w) is called the capacity of the surface C. We may interpret G(P) as the
Green's function for a point charge at infinity; this notion can also be
justified by considering the transformation of G(P) under an inversion by
reciprocal radii.

We apply now Hadamard's formula (6.15) and derive by comparison of

coefficients near infinity the variation of G(P). We find

(2.12.7) 8G(P) = -j _&g_(?%;ﬂ %G-% S vgao,
¢

and using (12.6) we arrive finally at [15]

(2.12.8) 5C(w) = m.“(_&@_l) § v i lvgt
c

Comparing (12.4) with (12.8), we recognize the close analogy between the
functionals C(Q) and C( o).

We can transform (12.8) by introducing the tensor

26 26 2 .
(2.12.9) Ty = 2 o, axk- éik(VG) , G=G(P)

We verify easily that

2, ar
(2.12.9') T’ —2-—“5 = 0 ; i=1,2,3,
k=1 “%

and we obtain the formula

(2.12.10) 5§C{w) = —AwreX“ : Tik 9xk 4T

for the variation of the capacity under a deformation (2.2). This result
could have been deduced directly from (6.6) and is applicable for more general

domains than is the case for (12.8)
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Let us specialize the deformation vector field and put

(2.12.11) Sy =%, S;=x, , S5, ;
this deformation leads to a stretching in the ratio {1+ €):1 perpendicular to
the x3~axis. We obtain from (12.10)
2
(2.12.12) 5C( ) = 81TE ij('%%‘) at s
D 3

which proves that the capacity of each surface C increases under such a
stretching. This result is not obvious if the surface C is ﬁot convex, and it
cannot be read off from (12.8). This example shows the usefulness of trans-
forming variational formulas intc different shapes; for certain types of
variational kinematics, monotonicity properties become obvious which are
otherwise hidden.

The gbove result can easily be extended to more general affine transforma-

tions., Let ((aik)) be a matrix such that

3 3 3
, 2
(2.12.13) > e oot £k Y o
%=1 ik 1Tk 21_,1 ii f=1 i
Then, the deformations based on the linear vector field
3
(2.12.13") S, = 21: an X o 171,2,3,
k=

will obviously lead to an increase of the capacity C.

Let us study next the Neumann's function for the exterior D of a closed
surface C. In the case of such an infinite domain, it is possible to ask for
a Neumann's function with vanishing normal derivatives on G. By this require-
ment and the condition of regularity at infinity, N(P,Q} is uniquely determined
and caen be shown to be symmetric in P and Q. It is tc be expected that this

Neumann's function will have a much simpler variational behavior than the
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harmonic Neumann's functions of finite domains. Indeed, the formulas (10.12)

and (10.15) can now be applied immediately, just as in the case p > 0. We have

(2.12.14) DN(Q,R) = ﬂVPN(P,Q)- Vp(P,R) § 24T
c

and

2s,(P)

___:L.....
(2.12.15) 96 Sﬂ kq 13 (P3QR) 3% dTp -

For Q near infinity, we may develop N(P,Q) as follows in terms of the

coordinates q of Qs
3

A + -3 = 2
(2.12.16) N(P,Q) = "J"[P 53 ani(P)qi olp )1 , P :L;lq

Here the CPi(P) are harmonic functions of P in D except at infinity; they

possess near infinity a develorment

3
- -3
(2.12.17) CP(P) X, tr k-\Dfika"O(r)
and satisfy on the boundary C of D the conditions
2@, (P)
(2.12.18) -—a-iz;—ao , Pec .

The function CPi(P) may be intarpreted as the velocity potential of an
irrotational incompressible fluid flow in the region D, bounded by the rigid
wall G which has at infinity unit velocity in the direction X, . The coeffi-
cient matrix (((x ik)) can be shown to represent a tensor; it is customary in

hydrodynamics to consider the tensor [19]

(2.12.19) Wi T ATO - &, Y

where V is the volume enclosed by C. We call ((wik)) the tensor of virtual
mags of the surface C; it plays an important role in the hydromechanies of

the surface C moving in an infinite incompressible fluid.
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We derive from (12.14) and (12.16) by a comparison of coefficients of

qi‘P-B the variationél formula for the velocity potentials

(2.12.20) SCFi(R) = SSVC&(P) NpN(BR) 8V 405
c

and, analogously, we obtain from this formula and (r2.17) by a further

comparison of coefficients

(2.12.21) S0y = 7 SSVCPi VP, dvpaoy

Thess results could also have been derived, of course, from (12.15).
Re would have found, at first, the variations of CPi and the c(ik expressed
as integrals over D and have deduced (12.20) and (12.21) by integration by
parts. Since the variational formulas involving domain integrals have an
interest in themselves, we want to give at least the variational formula

for the tensor (12.19) of the virtual mass. We define

J1x) 29y 29, 5‘% 94’
(2.12.22) Y 9x£ I - SV V),

which is for fixed i,k a symmetriec tensor in ﬂ and m. It is easily verified

that its divergence vanishes,
at(i k)

n__. . o
E’xm

(2.12.23)
m=1
Consider now a variation (2.2), but assume that the functions Si(P) vanish at
. -3 (% Sy
infinity at least like r 7; in ithis case the integrals of Px. ? extended
k

over the infinite domain D, converge. Under such a variation, we may replace

(12.21) by

(2.12.24) Sofyy ~ Z%:SH S {1k) .é.;g- T .
D

mﬂl m
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We find similarly for the variation of the volume V

(2.12.25) ST = -¢ SSE Eﬁ aT

and consequently, by definition (12.19),
s

3
(2.12.26) Bw,, = SSSS (tz(i ) 8, 8p.) -3—5— :
p " n m
This formula is of value in the case of extremum problems involving the
virtual mass if it is not sure a priori that the boundary surface C of the
extremal domain D is regular enough so that the varistional formula (12.21)
applies. Since extremum problems of this type play an important role in the
theory of discontinuity surfaces in fluld dynamics, the interest of the
above formula is obvious.
If we study the development (12.5) of the Green's function near infinity
in more detail, we are led to a series
(2.12.27) G(P,R) = —,(5-1 ~Ls Z P, (Pg, + o(p’3)
TP A=l
where the q’i(P) are harmonic functions for P€D, except at infinity. There,

they have a development

3
(2.12.28) Y, (@) - + el so(r"?)

and they vanish on the boundary surface C. They form the elsctrostatic

counterpart to the welocity potentials ‘?i(P) derived above and a completely
dual variational theory can be given for them. This theory was developed in
the Hadamard notation in [19] and can be readily transformed into the domain

integral form involving variational tensors.



13. An extremum problem for the virtuai mass.

We shall now apply (12.24) to a modification éf the extremum problem in
potential theory discussed in Section 2 of Chapter I and shall illustrate
thereby the value of interior variational formulas in such extremum questions.
We consider a closed surface Co which bounds a finite body Bo and which is

homotopic to a torus. We shall seek another surface C. spanned through Bo

1

so that the surface GO+C has an exterior without irreducible closed curves,

1
and such that the coefficient c(-fcrll connected with the virtual mass of

G°+Gl is a minimum. We are not able to discuss here the existence of an

extremal surface, but we shall concentrate on the necessary conditions for
such a minimum,

We define a deformation vector field Si(P) as follows. We choose a
point X not on Go and describe around X s sphere KP(X) of radius P 3 we
suppose O 80 small that KP does not intersect the surface Co' We determine
next a function H(P) which is twice continuously differentiable in the entire
space, has the constant value 1 in the sphere %P¢$X) and vanishes outside of

the sphere K Let Q be an arbitrary, but fixed, point in K 5y Dot on ¢

P 1’

we then introduce the deformation wvector field

A—

(2.13.1) 5,(P) = Siji;H(P) , r=P2Q , §fixed .

This field has a singularity at the point Q, but it is easily seen that the
varistional formula (12.24) ¢t1ll holds, although the imtegrals involved aro

now improper. The variation (2.2) based on the vector field (13.1) will

¥*

transform the swrface GO+G1 into a new surface G°+Cl

surface with respect to our extremum problem. Hence, its corresponding

which is s competing

x*
functional {4 cannot be less than the (X of the surface GO+Gl, whatever the

sign of the parameter £ .may be. Hence, we find by (12.24)
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3
(1,1)
(2.13.2) j;” 2% o —é-f dt = 0 , b, = te s

Lm
and by (13.1)

3
(2.13.3) Sjj > o -2 e -o :
p’ mv1l m

Because of the definition of K{P), the last integral is only to be extended
over the intersection of the extremwn domain D with ths sphere KF around the

fixed point X. If QE 2, as assumed, we may put (13.3) into the form

(2.13.4) (‘L)dt @gp)(Q) ,

where @(P) is a harmonic function of Q in K Clearly; also

Pz
(2.13.5) ZS e Py (—1—) atp = @, 3=1,2,3,

represents a harmonic function of Q in Kﬁ, Suppose now that the sphere K

2 P/2
intersects the surface C,; by our construction, the function éj(Q) is regular

harmonlc inside KP/2 even as the argument point Q moves across Gl. If Q lies

anay from G°+C , it is clear that @j(Q) is regular harmonic, since the

1

divergence of t, vanishes identically in D. Thus, we have proved the following

Jjm
thecrem: A necessary extremum condition in our problem is that the integral
sums {13.5) be regular harmonic functions of Q outside of the given body Bo.

We may consider this condition as a set of three singular integral equations

for the variastional tenssr % e should expect Intuitively that the surfece

jn’
Gl is a sheet spanned through the torus Bo such that CO+GI encloses the same

volume as did Co alone. This follows from the monotonic dependence of & upon
the domain. If we suppose, moreover, that G1 1s a smooth surface, we recognize

easily that the extremum conditions on the functions ®j(Q) mean exactly that

(VCPI is continuous across the sheet Cl, as was indicated in Chapter I,
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Section 2. Thus, (13.5) is an essential intermediate result formulating the
decigive extremum condition before the smoothness of the extremum surface is
ensured.

It is quite instructive tc study the plane problem which corresponds to
the above question. We give two closed curves Go and C; in the plane and

’
want to connect them by a curve C, such that the exterlior D of C *C +C

1 n o 1
has a2 minimum virtual mass, say in the xl—direction. It is easily seen that
the preceding reasoning leads to the extremum condition
(2.13.6) S "“‘"" log —= - dtp @ (Q) ,
jm
me 1 X BQ

where @ j(Q) is regular harmonic in the common exterior Do of Go and CO’, and

, 2% afp ) )
(2.13.7) tim 9"5 (Vq,) Sjm ,
q’l(P) being the velocity potential in the direction of the x1=axis for D.

In order to solve the set of integral equations (13.6), we differentiate
this equaticn with respect to qﬂ and use the well-known formulas for the
interchange of differentiation and integration in the improper Integrals of

potential theory. We obtain

2
2 2, (q)
- - E 2 __ - -—-—i—--
(2.13.8) Ttio 2. Sj‘ Yin Bx, ox. 5%, ox. (log = )dtP ﬁ
D
Observe now that, by definition (13.7), we have
(2.13.9) by tts =0, tg, = by .

Using further the f’act that V2 log == —l- = 0, we then find

(2.13.10) aql -9——2‘ - Tl'(t22 t) = -ATH s

2@, 29,

g, 2q

= ~TT(t12+ tzl) = mzrrtlz



~ 47 -

Thus we succeed in the plane case to get rid of the improper integral terms by
considering a proper combination of derivatives of the harmonic funections

Géj(a). The new formulas make it evident thst the tensor components t, are

ik
harmonie functions in the original given domain Do'
The formulas can be simplified still more by the use of complex

notation. We define ihe complex-valued function

(2.13.11) F(z,2) = § (P)+ 1, (P)

Then, the two equations (13.10) can be united to yield

- 2@.(2) 2
(2.13.12) —Q-__ F(z,z) = - ‘rr(t11+ 11-,12) = ~4(—-—i?-1_—z-) ,
23z oz

using the complex operators (8.4). Since F(z,;) is a harmonic function and

satisfies
{2.13.13) *ﬁ—_ =0

Oz Oz
we conclude that jzg is independent of z and hence is an analytic function of
z in D . Hence, fin:lly, we obtain from (13.12) the extremum condition that
(2.13.14) (ﬁééﬂ)z = H(z)

is a regular analytic function of z in Do’

The same method applies to many extremum problems of potential theory in
the plane, and this fact explains the easy application of interior varistions
to such problems. The analogy and the difference between the treatment in the
plane and in space becomes obvious. The same accident which permits conformal
mapping and analytic functions to play a role in the potential theory of the
plane 1s also responsible for the simple results of the variational technique

in this case.
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CHAPTER III

THEORY OF THE SECOND VARTATION

1. Generalities.
The method of interior variations based on a deformation field (2.2.2)
enables us to calculate also higher order variations of Green's functions in
a simple way. In fact, it is easily seen that we can obtain from the basic
identity (2.4.14) s many derivatives of g(Q,R; &) with respect to the
parameter € as the coefficient p(xi) in (2.1.1) has Holder continuous partial
derivatives with respect to the variables X, .
We shall deal in this chapter with the theory of the second variation of
the Green's function and derive an elegant expression for it. The significance
of this result for the treatment of extremum problems and for the general theory
of the domain dependence of the Green's function is obvious. In this section,
we prepare the way by establishing some useful identities which have an interest

in themselves.

We start from the identity in

differentiate it with respect to & and put € =0. We obtain

(3.1.2) L[ﬁ-g%f&l

1= ~L'[g(Q,R;0)) ,
£=0

where L is the differential operator defined in (2.1.1) and L/ -L; is defined

by (2.4.27) and has, in view of {2.6.4), the form

( ) it i’ ___i .a_ii ?;S.k
3.1.3 L'{ul = [( 8 )
1 9% 2%, 2%, xk

3
~a..
ZE:; XJ (ij)u .



This rather complicated expression simplifies considerably if u is a solution

of {2.1.1). 1In this case, we have
3

(3.1.4) L'[u] = ~L[Z % sj] .
j=1 J

Since G{Q,R) = g(Q,R;0) is a solution of (2.1.1), we derive from (3.1,2)

the repressntation

3
(3.1.5) 2ellif)) o> 1 (PUBM g ()« 2HBR s @)y nie,n)

2 |e<0 k=1 U Ty ’
where H(Q,R) is a symmetric function of both argument points which satisfies
in dependence on each the partial differential equation (2.1.1). It can easily
be seen that H(Q,R) is continuously differentiable even for Q=R, so that the
first right-hand term in (1.5) contains the singularity of %%f% &t the point
Q=R.
Since g(Q,R;£)==0 in € for Q€C, RED, we have also

(3.1.6) 2gQQ.R:E) _

S E , for QEC, RED

and hence

3
(3.1.7) H(Q,R) = - D . 2U&R) g 0y s qec, ReD
k=1 9% K

Since H is a solution of (2.1.1), we can express this function in terms of

its boundary values (1.7) by means of the Green's functicn and find

2G6(P,Q) 2G(P,R) ..
(3.1.8) H(Q,R) -ﬂ 3 v, 2, (s- )0

Comparing this result with (2.6.15), we recognize the significance cf the
regular function H(Q,R). It represents, up to the factor £ , the first
variation of the Greer's function G(Q,R) under variation of the domain.

This function will play an important rolsa in the-variastional theory.
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2. The recond varistion.

fe consider the formula (2.4.28), which holds identically in &, and
differentiate this identity with respect to the parameter. Since the singularity
of the function —3@53— is well known by formula (1.5) it is easy to esteblish the
validity of this process, We have to assume, however, that p(xi) is twice
Hglder continuously differentiable with respect to all its varisbles, sincs
these second order derivatives will occur in our formulas. After differen-

tiation, we put € =0 gnd obtain

2
(3.2.0) 2-e(@Big) | -YHE'[-@&%%M‘J , G(P,R) T,
pe® le=0 I £=0

4 P.R: E A
- HSE (G(P,Q), 5E
D

Here, we put E'--E; arnd define Eé by (2.4.29); snalogously, we define

a5 Sﬁ E’[G(P,Q),G(P,R) 4T,
E=0 )

3 2 2 .
4 < a P(X., 6)
(3.2.2) Eluvl=~ 2 —2"5 Alrgs &) _gf' _ea:f_ 4 o v
s k=1 36 1 J i k e £
and put E:-E",
Consider the expression 7((P,Q)=-ag%§-‘ill and the identity

{£=0
3 25.(R)

’ n . m I At
(3.2.3) Sj;jE [')L(P,Q),G(;,R)]dtP - - 4 W(R,Q) j);L aﬁj

-SIS)S WP, Q)L lc(F,R) Ty

which follows from Green’s identity and the fact that 7[,(P,Q) vanishes on the

boundary C of D. By virtue of (1.2), we may write this identity also in the

form 25 (R)
S.(r

. IVA v —ee

(3.2.4) Xi&h [X(P,Q),6(P,RY AT, = - &% WR.Q) “ o,

. jgj WP, X(P,R) Hd T,
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Using again Green's identity and the singularity ternm of ’}L given by (1.,5),
wa obtain finally
(3.2.5) m‘ B[ H(P,Q),G(P,R) 1t = -Q [X(2,Q), }P,R)T

D

where Qo is the bilinear form belenging to the Dirichlet integral {(2.2.10"),
The second term on the right side of (2.1) can be treated in the same
way, and we obtain therefore finally

2%e@re)| ... 2e(P.058) 2g(PRie)
(3.2.6) N e T A - - P

pe? 0

€=0
: ng E"[6(P,Q),G(P,R) T

Thie important formula permits an easy determination of the second variation
of the Green'’s function.

For the sake of completeness, we piv> here also the expressions for the

2 2
terms __3_5 Aik and —LZ f) . These expressions are obtained by straight-
2% 2e

forward computation from the definitions (2.2.8) and (2.2.87). We find

2 3 /
8°A,, (xp5¢) Z 2(8.,8,) 2(s,s))
(3“2"7) 1 ik = .. [....____i..._ + X ]
2 Py TS a(xk,xjs ) (xi,,xj )

3 _
+Z ?2S, 28 2(5s,,8.) 9(31,55) el 52,53)

__i ___k + + )
ij axj * gik[ a(xl,x2§ a(xl,xj) 2(x23x37 ] !

j=1

L @ Plzy;e) D(s.,8,) 2(5,,8,)  2(s,,8,)

(3..2.:75) 5 2 = p(Xﬂ)[ a(XI,ij + a(xl—j'y X + ——-(——Za - -,-x ']

o¢ 1773 2773

3
gs : 2
._...ia,p_ .,$_.._._a.__.p__ 1
¥ Z [axi axj SJ 2 Ix, Ix Sy Sjl

J

We observe next the particular structure of the function g(Q,R; €) as

defined by (2.2.3). We have the series development
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3, . ]
.€) =g + 26 26, .
(3.2.8) g(,R; €) = G (QR)+ & f\:_‘;(?qi 5@ 3-8,

wherse G* is the Green's function of the domain D' obtained from D by the
deformation (2.2.2). Suppose now thet we change the vector field Si\’,xQ)
arbitrarily in D, but keep it unchanged on the boundary C and at the two
points Q and R, Under such a change, D* would remain invariant, and hence
G*(Q,R) would be unaffected. In view of (3.2.8), we would also find g{Q,R;€)
preserved under this change of the deformation. Hence, we conclude that

g(Q,R;€ ) depends only on the values of S, on G and at the points Q,R. The

i
2
same holds elsc for -a-mf")' . Thus, we know a priori that we can trans-
oE&

form the volume integrals in (2.6) into surface integrals extended over the
boundary C; under the process of integration by parts, the singular points
Q and R will yield certain residua which will lead to the special dependence
of the left-hand term on these two points. It is possible, in fact, to obtain
such & formula by starting from (2.3). In view of the complicated structure
of the expressions (2.7) and (2.77) this procedure is, however, rather involved;
we proceed, therefore, in a different way.

Wo assume, at first, that the boundary C of D is sufficiently often
differentiable and that the vector field Si is chosen in such a way that it
has at every point of the boundary C the direction of the outward normel. Then,
the original domgin D will 1ie in the deformed domain D* and the Green's
function G*(P,Q) of D" will be a solution of (2.1.1) everywhere in D, except

at the point P=Q. For PEC, we have the condition
3

¥*
(3.2.9) ¢*(#%,0) = Qe p . 26 (F.Q) ¢ (p)
=1 ©°2p; 1
&2 - 2%" (P.9) 2
+ 25 5 (P)S. (P)+o(£°) =
5 i_,E:l api 3pk Si( ) k( Jto(E°) =0
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Hence, the function
(3.2.10) Q(P,Q) = G (2,Q)- G(P,Q)

is a regular solution of (2.1.1) in D with the boundary values

3 . X
(3.2.9') -€ 2. -ag—é-g*glsi(lv)w—%— 2 39——(:9*9-25 (P)s, (P) + o(€%)
i=1 1 {51

for PeC,

Therefore, we may represent Q)(P,Q) by means of the Green's function
G(P,Q) and the above boundary values. Since 3 ; has the exterior normal
direction, we find

(3.2.1) QaR) =+ € SS—G@*—Q s 2LER oy

2%a(p 2 DG(P.R 2
H L"p‘lls(r)l -9—5(_;;—2 a7+ o( %)

We simplify this result by use of the function H(Q,R), defined in Section 1.

Observe that IS{ =-(S-2/) and hence by (1.8) and (1.7)

(3.2.12) CUQ,R) = e H(Q,R)+E S§ —9%—@-& H(P,R)AT

2
& gj 2 G(P,g) aG(P,R) (5 )20+ ol £2)

Sinee ()(Q,R) is, up to higher order terms in &, replaceable by EH(Q,R), we

may write finally
(3.2.13) G (Q,R)- G(Q,R) = € H(Q,R)~ 82Q (#(P,Q),E(P,R)} ]

J _Q_K_JQ).GP 2G(P,R) Sp)2d<7-+a(8)

2 dVp

Thus, we have proved under the above restricting assumptions the formula
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2%6(P,q) 2G(P.R) (s-2)* ao,

2 2 2
. sR) = = (n(P » P’R 1- jj
(3.2.14) §7G(Q,R) = -2 €7 (H(P,Q),H(P,R)1- € Yo 9%

2
In the last integral, we may replace @VGz by lower derivatives if we use
b

the fact that G(P,Q) satisfies the differential equation (2.1.1) and vanishes
identically on C. If Pl and jOZ denote the principal radli of curvaturs at

the point P, it is easily checked that in view of (2.1.1)

2
(3.2.15) 0%a(P,Q) _ (—k- + —2) _ai(j%ﬁ). .
31/% 1 )’ 9%

Hence, we arrive finally at the result

(3.2.16) $%G(Q,R) = -2 82Q°[H(P,Q),H(P,R)]
¢ S 9G(P,Q) 2G(P,R) (k- + L) (s Vo
27, N P -

We want next to rid ourselves of the assumption that the deformation
vector field S 1 has everywhere normal direction with respect to the boundary C.
Let us suppose that only the sssumption (2/-S)<< 0 is fulfilled on C. 1t is
easy to determine the normal shift /\ on C which is necessary in order to
transform this surface into the surface G* induced by the deformation (2.2.2).
In fact, let xi(u,v) be a parametric representation of the surface C and let
Vi(u,v) be the components of the unit vector on ¢ in the direction of the
interior normal. We want to represent the point x: of C* in terms of a

normelly displaced point x,(u+ EU,v+ €EV) on C. Thus, we have for a suitable

1
*
function A of W =u+E U and v sv+EV the condition
axi ’axi
(3.2.17) xi(u,v) + ESi(u,v) = xi(u,v) + € ( o U373 V)
2 2 2
i G B U
2 2 ou 3v 2 :
ou v




Multiply this equation with 2/ (u,v) and sum over 1. Since o/

axi 9x v, 2 i
to the tangential vectors Su 3?’ 2u » T3¢ 0 we obtain

(3.2.18) Ma ,v) = (8- 2) - % (L0 « 2w+ N v*) + o (e )

is orthogonal

¥

where X,)?],ﬂ are the coefficients of the second fundamental form of C. We

deduce from (2.17) by comparison of the tangential components

(3.2.19) UE+VF = (- g—§)+o(1> , UF+ VG = (- §§)+o(1)

b
where E,F,G are the components of the first fundamentsl form. Thus, U and V

can be expressed linearly in terms of S and geometric quantities of G, up to

higher order terms in £ . We obtain finally

(3.2.20) Au,v) = {S+2)~ E[U 2—%4:—4 +V 2%4‘%/-)-1

Z A 02 oMUy + NV T+ o€ )

We write for short

(3.2.20") Al,v) = (5-2)-¢ PIsi+ole)
28
where @[S] is g simple expression of second order in 5, and ;xi' which depends

on the geometry of the surface C.

Consider now the expression
(3.2.21) G (Q,;R) = G(Q,R) + B G(Q,R) +3 5%G(Q,R)+o(e?)

We have in formuwlas (2.6.15) and (2.16) simple expressions for the first and

second variation if g normal shift 51/ = £ (5-2) is made. Ingerting the value

(2.20') into these formulas and collecting the terme of order 62, we obtain
finally

(3.2.22) §%G(Q,R) = -2 EQQO[H(P,Q),H(P,R)]

- E»’-jfﬁ_@aﬂl _0G(®,R) r(.l_+—/-6— (- y)?r 2@[5]](30- .

di/P BVP
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This variational result has been derivad under the assumption that
(S+2/) <0 and that the surface C is sufficiently smooth. We know, however,
from our general considerations that a formula of this type can be obtained by
integration by parts of the expression (2.6). We used the later reasoning only
in order to save laborious calculations and to arrive easily at the final result
of these transformations. Hence, formula (2.22) must hold for an arbitrary

deformation vector field S, and for all surfaces C which possess continuous

i

curvature and a continuous second normal derivative of the Green's function.

In particular, the elegant formula
(3.2.16') 5%G(Q,R) = -2Q_[&6(P,Q), §G(P,R)]

} gga%%mm Ly Ly 592 4o

k4
; PR

holds for all such surfaces under a normal shift Jv/.

3. Parametrization.

We calculated in the preceding section the second variation of the Green's

4

function of a domain D under a deformstion of the particular type (2.2.2}). Ii
is necessary to adapt this variational formula to various problems arising in
the applications. For example, we may have a family of closed surfaces Ct

which depend on a parameter t; they enclose domains D, with corresponding Green's

t
functions Gt(Q,R). It is necessary to find simple expressions for the first and

second derivatives of Gt with respect to the parameter t. These expressions are

obtained from our variationsl formulas by elementary transformations.

Let us suppose that two surfaces Co and Cl are given such that Cl encloses

Go entirely, and let V(P) be a twice continuously differentiable function in

the domain bounded by O, and C_. We assune, moreover, that | VV|#0 in this

region and that the function V(P) has on C, and C, the boundary values 0 and 1,
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respectively. Consider now the level surface Ct’ defined as the locus

(3.3.1) VP =t , PeC,
These surfaces have no self-intersection and they determine a one-parameter
family of finite domains Dt which depend monotonically upon the parameter t.
Let Gt(Q’R) be the corresponding Green's function; our problem is to determine
the derivatives of Gt with respect to the parameter t.

Let P be a point of Gt and compute the normal shift &z, which is necessary

in orxder to place P on the level surface C We clearly have the condition

R t+ AL
2V 1 27V 2
(3.3.2) = Sy = (§u)+ ... = At ,
v 2 57
whence
2
(3.3.2) sv= (55 pu-2 (B2 e oladd)
av

Therefore, we derive from (2.6.15) and (2.16') the identities

oG, (P,Q) 26, (P,R)
2 (28 P0) 26, R py(p)
' t
and
2
._a_... N - - _Q. -.a.
(3'304—) atz Gt(WBH) ZQO[ at Gt(P,Q) s at Gt(P’R)]
(
) ﬂ 8Gj‘P,Q) 9Gt(P,R) (av(P))uz[( L
o2 27p EY £
c EN
t
J2%um) |, (Bv1

We observe now that Ct is a level surface for the function V(P). Hence, we

have the well-known identity

2
2 g ¥ 1 1 a2V
(3.3.5) vV = - + ) s
27/2 Pl /02 2

and we may write
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, 26 (@) - -2q 2 2
(3.3.4") NE 6, (@,R) - -2q [ ¢ (P,Q), £+ ¢, (P,R)]

. H 9Gt(P,Q) Qet(P,R)

2V(P)\"3 2 oy
27, 57y ( 2,1/) v V(z.—da’P .

Cy,
The preceding formulas asre partizulary interesting in the case of a posi-

tive coefficient p(xi) in the differential equation (2.1.1). In this cass, we

2G
know that the Green's function is positive in the domain Dt and that 75;} is
2V

positive on C Moreover, it is clear that ov is negetive on esch level

£°
surface Ct' Hence, we see that the Green's functions Gt(Q’R) increase

monotonically with t by virtue of (3.3), a fact which follows alsc easily
from the minimum principle valid for the Grewsn's fuanetion. Let us suppose

further that the fmection V(P) is subharmonic, i.e.,

(3.3.6) vV =0
between Co and Gl. We can then sssert that ths surface integral in (3.4')
is negative and we have the estimate
2% 2. 2
(3.3.7 5 G (Q,R)= -2Q [~ G (P,R), -£ G (P,R) .
‘3 3 ) 8t2 t(Q’ ) QO 9‘1‘. ‘b( 2 ); 91’; t( ’ ]

Equality will hold in {3.7) in the case of a harmonic function V(P).
In order to draw conclusions from (3.7), we introduce an arbitrary
fundamental singularity S{Q,R) for the differential equation (2.1.1) which

is defined in the larger domain D. bounded by Gl. Thus, the functions

1
(3.3.8) ht(Q,R) = Gt(Q,R)- S(Q,R)

will be regular sclutions of (2.1.1) throughout Dt' We might choose, in

particular, S==G1. Clearly, we havse

2 2
, 2 2 o 12 2



..59-

Consider now the quedratic form
N

(3.3.10) Z b, (Q,Q) )\Io A- = by

p =L
based on N arbitrary numbers Af’ and N points QP inside Do' We conclude
from (3.9) and the fact that Qo[u] Z 0 for p(xi) =20

32

(3.3.11) S A=0

which shows the concave dependence of the quadratic form At upon the
parameter t.

This result gives an important and useful insight into the dependence
of the Green's function upon the domain D. Consider, for example, the case

of Laplace's equation. Here, a fundamental singularity is readily available,

namely
I
(3.3.12) S(Q,R) = ;T%IET
We have
Ve L —he
(3.3.13) h, (Q,Q) e Gt(Q) ,

where Ct(Q) is the capacity constant of the domain D with respect to the
point Q, as defined in Section 12 of Chapter II. We may therefore state that
in the case of a subharmonic function V(P) the capacity constant Ct(Q) is a
monotonic and convex functicn of the parameter t.

Let us return to the case p(xi);’ 0. In this ease it is well known [1, 2]
that there exists a kernel function Kt(P,Q) for the domain Dt and the

differential equation (2.1.1) which has the reproducing property
(3.3.14) u(Q) = Q [k, (P,Q),u(P)]

for every regular solution L(P) of (2.1.1) in Dt' The Dirichlet intesgral

QO is, of course, to be taken over the domain Dt' We have by the Schwarz
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inequality and the reproducing property of the kernel the inequality
(3.3.15) w(@)*= @ ulE, (3,Q)

Observe now that ;5% Gt(P’Q) is a regular solution of (2.1.1) in Dt’ so that

the above inequality can be applied to it. Thus, we deduce from (3.9) the

result

2
27h, (Q,Q) 2h, (Q,Q) _
(3.3.16) —t—— < 2% 1K QT
2%

We may define [Kt(Q,Q)]-l by virtue of (3.15) as the minimum value of
the Dirichlet integral Q [u] for all solutions u(P) of (2.1.1) in D, which
have at Q the value 1. Hence, this functional increases monotonically with Dt'

Thus, (3.16) implies

2 N
2°1,(Q,Q) 2h, (Q,Q)
(3.3.17) —t—— g () & (T
at °

an ineguality involving only the kernel funciion of the initial domain Do.
Analogous estimates can be obtained, of course, for the more general
expressions (3.10).

It is possible to extend the preceding reasoning to the case of Laplace's
equation. In particular, if we consider the exterior D of a closed surface C,

we can introduce the kernel function

(3 -318) K(P,Q) = N(PQQ) - G(P;Q) = n(PsQ) + g(P;Q) 5
where
(3.3.19) N(P,Q) = Z;F;%§:57 + n{P,Q) , G(P,Q) = mer) " g(?,qQ)

are the Neumann's and the Green's functions of D.
Let Go be a clogsed surface including Gl and let V(P) be subharmonic in the
domain between the two surfaces. We assume again that |VV|#0, and that

V(P)=0 on G0 and V(P)=1 on C,. Let Dt be the exterior of the level surface
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V=14 and let Gt be the corresponding Green’s function. We find in analogy to

(3.9) the inequality

2°C, (o) ) 2
(3.3.20) ——-—L»-*—atz = smo[,at Gt(P)]

for the capacity Ct of the domain Dt’ where Gt(P) is the Green's function of

Dt with the singularity at infinity. Since 'E?t Gt(P) is regular harmonic

in Dt’ we have

2 ~0f 2.

(3.3.21) = G, (Q) ~ QK (P,Q), 2= G, (P)]
with Kt the kernel function of Dt and, hence, by the Schwarz inequality

2. 2 , 2. .
(3.3.22) 5% 6, @17 =k Q. [5T e (™3 .
Combining (3.20) and (3.22), we find

2

2°C. (o) _

(3.3.23) —t— zsv[-,g; Gt(Q)]th(Q,Q] '
, 2t
for arbitrary Q€D,. Let now Q—>wm; it can be shown that [19,p. 1391
: C ()
(3.3.24) Lin K (Q,Q) = S
RQorw ™
while obviously
2C, ()
2 A R
(3.3.25) lim r %7 G6,(Q) = -
Q-»m 2t Tt LT 2t
Hence, we find 5 () (o)
27C (o 2C (o) .
(3.3.26) —t 220,0(00)01(-“9'%_)4 ,
ot
or
2

, 2 —_
(3.3.27) " (5;%-057) <o .

Thus the reciprocal of the capacity varies as a concave function under
a level surface variation with a subharmonic function V{(P). This result shows

the slgnificance and usefulness of the variational formula (3.4°).



- 62 -

We can use (3.27) in discussing various extremum problems. Let, for
exampls, C be a closed surface which encloses a fixed pcint Q. Define the
fanctional
(3.3.28) m(C) = 6(Q) C{w) ,
which is dimensionless, i.e., remains unchanged under a similarity transfor-
mation of the surface C.

We call a smooth surface C stationary with respect to the functional T
if we have §TT =0 under infinitesimal deformations Sz of C. By the Hadamard

formulas (2.12.4) and (2.12.8) this condition has the form
1 !

(3.3.29) 6(Q) 2 —2—6(P,Q) = () 2 —2—c(P) |,

oV v
for every Pe C, where 2~ and 2/+ denote the interior and exterior normals
of C, respectively.

If C is a sphers of radius R around Q, we have

o1 1 1R .
(3.3.30) G(P,Q) pr (r(P’Q 5, &) pd (1 ;(—P’-Q;) ;
hence 1 1
(3.3.31) 0(@) 2 —2-o(r,) = —Lpm = 0(@) 2 -2 0 |
ov ” ¢nR32 ® v

Thus, the sphere is a stationary surface with respect to the functional TT.
We want now to show that it is the only possible one.
Suppose, indeed, there were another surface G1 with this property. We

take Go to be & sphere inside C. with sufficiontly small radius and we

1
consider the level surfaces Ct(Ofgrbﬁa]J of the harmonic function V(P) which

is zero on C0 and 1 on C Let

1
(3.3.32) o= ﬂ(ct) - Gt(Q)'Ct(oo)
We have

- ’ A ‘o ~
(3.3.33) Tft = Ct(OO)”t 4)*’Ct(0u)0t(4) ,



- 63 -

(3.3.34) T, = €, ()67 (Q) + 26/ ()C,() + 67 (0)C, (a)
Whenever WT; vanishes, we can write
c/(Q) ¢ {w) C, ()
" 1, t 2
(3.3.35) e = Trt{a;:@ R 2(ct(cfof) L

In view of the convex dependence of C+(Q) on t and by (3.26), we find

(3.3.36) T

% =0

=0 , if TTt’

We have to consider the case of equality in (3.36). Clearly, this is
only possible if c,;’(Q)-o, and by virtue of {3.7) this is only possible if

(3.3.37) ' if% Gt(P,Q) = const., for P inside Gt .

By (3.3), this is only the case if we have on Ct the equality

2 . 2V(P)
(3.3.38) 3 0, (F,Q) = o 5 , Pec.

with a suitable constent factor ¢f. The surface Ct is an analytiec surface,
and by the Cauchy~Kowalewski uniqueness theorem for solutions of partial
differential equations with given initial data, we obtain

(3.3.39) G, (P,Q) = A[V(P)- ¢]

The sphere Go appears gs a level surface of Gt(P,Q) and hence, obviously, all
level surfaces Gt are sbheres around vhe point Q. Hence the final surface Cl
will be a sphere around & and we have the original type of stationary surface

with respect to TT.

If C1 is not a sphere with Q as center, we have the inequality

17) ’
(3.3.40) T, >0 , if M =0

This resull shows that TT? can only cross from negative values to positive

Fa) + I . . L3
values as t increases. Since TTO==O, we rezognize that'TTt remains positive
for t > 0, and 1TI==O is impossible. Thus, there cannot be a stationary

surface sther than a sphere around §.
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Since TU, increa.2d when Wwe passed Irom GO to Gl, we see that 1T has 1ts

nwinimum valus for this spu®@ and
(3.3.41 clm)e(gy 27

with equality holding only in the cas® of & sphere arouwnd &.
We observe how the convexity of the Jepacity leads {o the inequality

(3.3.41), a uniqueness theerem for the functio, "7 uquation\(3-29) and the

AN
monotonicity of 1T; at the sai. time.

4. TIhe two-dimenalonal cage.

All methods applied in the preceding -zctions can be carried over wit.,out
any change to the case of a partlal diffsrential! equation (2.8.1) in two
independent variables. We devote to this case a special section only for the
reason that some formulas uimplify considerably and lend Jhemselves to

intereating applicuationy.

Let again
(3.4.1) H(Q,R) = -;r 26(r.9) QG(P,R) (8- 2)dy

denote the solution of the original differentlal equation whlch 1y, up to the
factor €, the first varistion of the Green's function for the displacement
vector field Si (i=1,2). If Si has the normal direction on the boundary
curve C of the plane domain D and if K (s) denotes the curvature of C at the

point P(s), we have in analogy to (2.16)
(3.4.2) 5%G(a,R) = -2 £7Q [H(P,Q),H(P,R)]

2 26(P,9) 25(P,R) Y
- B dr B, 27, K(s)(S-¥)ds
G

We want to extend this formula to the case when Si is not normal to C;

it is at this stage that the two-dimensional theory becomes simpler, in view
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of the simpler differential geometry. We decompose the displacement vector

Si into normal and tangential components Ni and Ti,
. S. =N +T = (S- 2 +1S, - (52
(3.4.3) ;=N (s-2) A { : (s:z)z,] ,

and we let N and T be the projections of the vecior Si on the normal and

tangential vecteors, respectively. Starting again from the condition
¥* * *
A +e5s = £
(3.4.4) xi(s) i(xE) xi(s Y+ € Als )z/i(s ) ,
we derive by rrenet's formulas the relation

(3.4.5) E(Ni+ Ti) = ;ci(S){(s*- g)- € )\(s*)(s*— s)}

4 1/4(3)1('5' (s -8)%+ & /\(s*)} +o( %)
. w

Thus, we find

(3.4.6) s -s=gT+ole)
e ) N ) =m-€ 2 12e0(e?)

and finally

(3.4.8) AMs) = N- E [T %’3 + —*2‘— i+0(g%) .

Trnis is the equivelent normal displacement cf C unler the general deforma-
tion (4.3).
Because of the correction in *he normal shift, the first order varietion

leads to a correction term in the second variastion and we find

(.4.8)  E2G(Q,R) = 2 ezqoaz-z_p,c;),ﬂ(,?,n)]

—sz‘ 2G(P,0) BG(P'JQ L L B P .
. a"VD a’,’lp as
. )

1

This formula glves ihe second variation of the Green's funciicn under an

arbitrary displacement with a vector fieid -S‘i.,
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Formula (4.9) enables us to study the variation of the Green's function

with the parameter of a one-parameter family of curves. Let, for exampls, Ct

be a family of closed curves given by the complex parametric representation
(3.4.10) z = £(g3t) , O=t=1, O0=C=1 |,

which expresses for fixed t the points of the curve Ct in dependence on the
parameter °. We assume the function f£ to be periocdic in @ with period 1
and to have two continuous derivatives in each variable.

Egeh curve C & defines g finite domain Dt and a corresponding Green's

function G(z,Z ;t). We consider the curve C, eand the shift
0

et ) - . = . - + & . _ e V2,
(3.4.11) £(T ;t) f(O‘,tO) ft(O',to)(t to) 2ftt(ﬂ',to)(t to) cee s

which carries points from C, into points of Ct‘ We may express the unit

1
o
tangent vector at the point z(C ;to) in the form

ioch

(3.4.12) " = £ (T3t )/I8p(T 58 )l
and decompose f’t into tangential and normal components,
(3.4.12") ft(U';to)(t— t,) = Tl ™+ N ol” ’
with
" o . -1ck - - . -l -t
(3.4.12") T Re{ft(c',to)e }(t to) , N = Inm {ft(q’,to)e (t to) .

Using (3.4.9) and observing the additional correction from the first variation

due to the term = f ((T;to)(t— to)z in the displacement, we find

2 Tt
2.
(3.4.13) 2ol at) -2Q [H(w,z;4), 8w, 7 5t)1
2t
Lo\ 2GGmaest) 26T 3t) rys (o) (Rl “iar ~10) /)
EY o, o, [K,Lt\(T,t)l 2 Re £.e Im{fq.ta j/lfa.]

¢ T 1)e 1P L 1
Im {ftt(d’,t)e } _.dso_
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This formula becomes particularly interesting in the case of convex curves,

for which the curvature 1 is always positive. Let Co and C. be any two convex

1
curves enclosing the origin. We suppose them described analytically by the
values po( <P), pl(qi) of the supporting functions in dependence on the angle

of inclination CP of the normal. We introduce then the family of convex curves

C % by defining their supporting functions as follows:

(3.4.14) pt(Ci’)=(l~t)po((‘tJ)*tp1(CF) , O0=t=1 .

In order to describe this family in the complex form (4.,10), we observe that a

tangent to G, whose normal has the angle of inclination (? is given by Lesse's

t

normal forn

(3.4.15) x cos @ +y sinP = pt(qﬂ
and that Gt is the envelope of this family of straight lines. Hence, the
points of C, are found by eliminating @ from (4.15) and
. . -
(3.4.16) -x sin@ +y cos @ pt(CP)

Thus, we find easily
Cepot) o oiF <.
(3.4.17) £(@st) = o7 [p (@) +ip (P)]

= (1- £)£(p;0) * t£{ ;1)

We calculate

(3.4.18) e - ie*¥p, (@) + (@)
and verify that eiog__ ~=iei¢ and
(3.4.19) Im Ce e .0

by tq’t )

Moreover, we have clearly

(3.4.20) £ (@it)=0
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Thus, (4.13) simplifies to

2
(3.4.21) Q—&M = -2Q [H(w,z3t) H(n, g 5¢)]
Y—Giblﬂl Q—Mdﬁ Kl£(q@s1) - f(CP;O)l‘?' ds

Formula (4.21) is very useful in the case that the coefficient p(xi) of the
differential equation is non-negative. In this case, we can again assert that

Qo[u] is non-negative and that % is non-negative. Let S(z,&) be a funda-

mental singularity of the differential equsation considered; then
(3.4.22) hiz,7 ;t) = G(z,7 st) - 5(2,7)

is a regular solution of the differential squation in Dt° Reasoning as in

Section 3, we can assert that the expression

N
(3.4.23) a, = P’Zf;’l h(ngz 3t) )\f, A

is a concave function of the parameter t.

This general result contains numerous special cases and leads to various
inequalities. It implies, in particular, that the capacity of a convex family
(4.14) at a given point with respect to Laplace's equation is a convex function
of the parameter t of the family. We do not enter here into a discussion of

the various results and their possible generalizations.

5. Singular varlations of the second order.
In Section 9 of Chapter II, we derived from the general formula for first
order variations of the Green's function of a domasin D in the complex z-plane

a particular result for the deformation
* id 2

(3.5.1) Y N
zZ2~ 2

This formula has in *he =ase of Laplace’s equation the simple form
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x % . 9G(z ,7) 3G(z ,1)
pan g ot - re et o P 2]

+o(p2)

Since this result has been derived from the formula (2.8.7), it is valid for
the most general plane domains and can be applied to extremum problems for the
Green's function in order to charascterize the cxtremal domsin. One cbieins
in many cases, from the extremum requirement and the variational formuls,
necessary conditions for the extremum domain in the form of a differential
equaticn for its Green's function. One can then show easily that the required
extremum domain has a plecewise analytic boundary curve C; one can even find in
many cases domains D which satisfy all necessary conditions imposed by the
study of the first order variation. But the question arises to show that there
exists only one unique domain satisfying the necessary conditions. It is natural
to study the theory of the second variation in order to obtain such uniqueness
results,

We want to derive in this section a theory of the second variation of the
harmonic Green's function under interior variations of the type (5.1). Since
we cannot use the principle of superposition of variations when studsying

second order terms, we shall start immediately with a variation

N
*
(3.5.3) z = gz+E€ z ;’i_‘f%/ , A J=1,7=1,...,N .
Y= ]

We suppose that no z, lies on the boundary C of the original domain D; if €
is small enough, the mapping (5.3) will carry C into & curve " in a one-to-
one manner, and let D* be the interiocr of C*. fle denote by G*(¢7,7 ) the
Green's function of the varied domain.

We assume that C 13 an analytle curve; by our preceding remarks it is
clear that this case will be the most important one in the applications. ‘ore-

over, because of the continucus dependence of the Green's function on the



dcmain, our final result can be extenced to the most general domains through
approximation by analytically bounded ones. We shall follow the same method
used in Section 2 for the general cass, but shall utilize fully the advantages
of complex notation.

Since D and 0" have analytic boundariles, we can choose € 9o small that
both Green's functions G* and G are analytic in the closure of D*-ﬁ*.

®riting z =g+E 2(z), we have by Taylor's theorem

(3.5.4) 0=0"(g+en(g), ) =" (F,n)*2 Re{s 2(2) l‘"—‘-a%ﬂl

2 2.%
= Z(; )2 2 Qa(géQ)}+0(g3)

for €C. Hence, the function
+
(365-5) -A-(;!?):G(;,FZ)GG(;)'?)
is regular harmonic in the closure of D and has for ;:6 G the boundary values

#* 2
(3°5_4v) -2 RB{E Z(;)_@_{.a_%:_ﬂl,,,—_—z(z;)Z aGi;’ Q)}+O(£3)
P .

Using the Green's function G(y,n) of D and the identity

(3.5.6) 26(z, ¢ “ds = - &Mdz

anz 2 1 2z s
we obtain
(3.5.7) Mg, n = %{4 S[g 2(2) 2_(24.'1_2 Z( )2 .2 % :
G
. 2.z ) 26 dz:} +0(€?)
Put now

2
(3.5.7) A, =e A (g, S A, ) -oce?)
®e find at once

(-5.8) A (7, n) =R {-f- gz,(z) 20z.n) D3(z2)
C
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A (z, n
(3.5.9) .A?(¢,q)=ne{§jnmzu)___;z +z()2jzﬁhull]iﬁbaéld{}.

We can evaluate the integrals by means of the residue theorem. We find,

first,
26(z,, n) 2¢(z,, %) (n.,Z)
(3.5.10) A (§,7) = Re SWZ Ay z;zj z;zf '22(7)2657
_22(4)2__(%41)- .

This result is equivalent to (5.2) and could have been obtained from this
formula by the principle of superposition of first order variations.
In order to calculate the second variation term _/\_2(¢ | ), it is useful

to introduce the two kernels

ach_ru

(3.5.11) K(G ) = -4 5% o7

and

(3.5.12) (g, r? %‘#‘1 W- 1(7;,7)

which play an important role in the theory of conformal mapping and orthogonal

T s

function systems in the domain D [1 3. The kernels K(z;,?) and ﬂ(z; ; fl) are
regular analytic functions of their arguments throughout the domain D.
In order to simplify the result, let us suppose that the parameters A v

in {5.3) have been chosen in such a way that

(3.5.13) z2(z) =z(r1)-uo ,

i.e., S0 that the argument points considered are fixed under the variation.

With these notations and assumptions, we calculate easily

2G(z,, n) o{z,,C)
(3.5.14) AL(F, 1) = Re{161'r z Ay ZV i ;\z‘ Mz ,2,)

P’V’ﬂ Z” B K
N .
—— = aa(zy,q) 2G(zy, &) -
- 1,6‘1'1“2 P\Z,yw . ’\v)\p P2y 22 K(zp,zy)
N
> 26G(z ) aG(z ) 26(z ,Z’) 2G(z ,U)j
> 1 w7 » 1, F Y
+ O }(
u 1,_1/\ /\f* (ZH" z,,)z ( ZzH 22y 22y 72y
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In this formula for the second interior variation of the Green's funetion,
certein bilinear forms appear which are well known in the general theory of

conformal mapping. The forms

(3.5.15) Z ﬂ(zp,zy)x Xy s ¥ = E K(ZP,;,/)XP;KZ,

u, v =1 Ps¥ =]

satisfy, for example, the inequality
"~ ~t
(3.5.15") 1] =k ,

a result which leads to various convexity statements with respect to functionals
connected with the Green's function.

We do not intend to make applications of the above formulas in the
present paper. Our main purpose in presenting the results is to show the

uniform character of the various methods applied in the variational calculus.

6. The comparison method.

In this section, we want to give analternate method for the derivation of
second order variational formulas and apply this method to the Neumanrn's
function.

We deal again with a three-dimensional domain D and the partlal differentisl
equation (2.1.1). Let D be another domain and suppose that the intersection
D,=Do D is a domain. Let N(P,Q) and N*(P,Q) denote the Neumann's functions
of the domains D and D*, respectiveily. We coniinue the definition of these
functions beycnd their demain by putting them equal to zero if an argument point
lies outsicde of this domain. We suppose that both demains are smoothly bounded.

Let Q and R be two points in the intersection D, and let QD[u,v] denote the

2
bilinear Dirichlet inlegral for the differential equation (2.1.1) extended

over the domain D. It is then easy to verify the identity

(2.6.1) W (§,R)- N(Q,R) = QD+D*[N*(P,4Q)-N(PgQ),N*(P,R)wN(P,R)'] )




which is a consequence of Green's theorem. Exactly the same identity, but
with opposite signs, is also true if the Neumann's functions are replaced by
the corresponding Green's functions.

Let us suppose now that the domains D and D* are very near to each other
and that their boundary surfaces lie in an & neighborhood of sach other. In
this cuse, in each closed subdomain of the intersection D2 vie have a uniform
estimate

(3.6.2) N (P,Q)-N(P,Q) = 0(&)

Hence, the contribution of D2 to the above Dirichlet integral is only of the
order Ezaa The first order terms of the Dirichlet integral are due to the

difference shells and lead to the equation

(3.6.3) N (Q,R) - N(Q,R) =SS[VN(P,Q)' VN(P,R) + p(P)N(P,Q)N(P,R) 1§ ydap* o(E) ,
C

which is Hadamard's variational formula (2.10.15).

If we want to evaluate the identity (6.1) to a higher order of precision
in €, we have to utilize the following result. Let C be a sufficiently smooth
surface and 2 a thin shell over C with variable width S». Let £(P) be a
twice continucusly differentiable function in the clecsure of 7.3 then we have
the estimate

(3.6.4) Sg £(PldT = ng’(P)ﬁv/ aa +S§[% %H%(_"%T%m § v+ o(Sv%),

|

c /
where Pl and fDZ are again the principal radii of curvature at the point P
of integration. Applying this gensral formula to estimate (6.1), we find
easily

(3.6.5)  N(@R) = 20 5M(P,Q), (P, | Lgf‘;-rva:(mm-vw(m)w
C

+53-7-f N(P,Q)N(P,R) - (= + —%)[VN(P,Q)- VN(P,R) + FN(P,Q)N(P,R)':fgyidq~P .

H <
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It is worth while to consider in more detail the term 50 (VN(P,Q)- VN(P,R)).

Let r(u,v) denote the vector varying on the surface C and put

(3.6.6) V N{P,Q) = Ar * /Szv , VN(P,R) = Jr,* Sz,
This representation is possible, since VN has no normal component on C. We
can write 3
2
2 ) Z 2°N(P,q) 2N(P,R)
(3.6.7) 32 IVN(P,Q)* VN(P,R)1 = v

= Qxi axk axk i

3
LS 2°N(P.R) 2N(F.Q)
1, 2% 9% 9%

where Z/ is the normal vector to G,

-

7/'1 b

(3.6.8) =& Gxr) P lrxr

We start now from the identity

2N

(3.6.9) %,

Z, =0 .
i=1 1

and we cbtain by differentiation

3 . 3
— .Z‘ZN E?xk N 2 .
(3.6.10) DN y o=. ). 20 27
{1 2% 9% 2w i T Px 2u

and an analogous equatlon with v replacing u. Thus, using (6.6), we can write

3
Cr 4] 93/
I 3G R I TR

= - + S T +
(z, " fr) Py,  82)
It is well known that the relations

‘ “ ”
(3.6.12) r, ¥, e

!
AN

o
| £

v, == v =T

v’ u ‘v
hold, when &,YH, | denote again the coefficients of the second fundamental

form. Thus, we can put
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(3.6.13)  3IVNER,QVNE,RT = 2xy ol + A S + 2+ UABS ]

= 2 VN(P,Q)- VN (P,R) gfg g:ggf;&j@%%‘p}g f%??

Thus, the normal derivative of the scalar product between two Neumann's functions

equals the scalar product itself, multiplied by the ratio of the second and the
first bilinear fundamental forms. It is remarkable that his expression involves
only first order derivatives of thes Neumann's functions.

We want to formulate our result for the particular cass of Laplace's

equation. We find

(3.6.14)  §°N(Q,R) = 2q [ SN(F,Q), SN(P,R)]

SjVN(P Q) VN(P,R)[2 W@N(P Q),VN(P R)} - ('-°—+"‘L)]82/§dc7'1, . E
)

Here, 7?(11,22) denotes the ratlio of the second and the first fundamental forms
for any two given tangential vectors ¥y and ¥,- This result can only be
applied in the case that the domain D considered is the exterior of a closed
surface C, since only in this case can the existence of a Neumann's function
in the proper senss ve assumed.

We proceeded in this section in a rather formel way, without specifying
the exact assumptions under which the above estimates can be justified. It is,
however, sufficicnt to point cut such a formel method which works at least in
the case of analytic surfaces C; for, we know by our general theory of variation
fields that a formula of the type (6.5) for the second variation of the Neumann's
function must exist and can be obtained by integration by parts of the interior
variational formula. The method of the present section serves only to givs a

short cut to the Ffinsl result without too much labor.
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Next, let CPl(P) denote the velocity potential for an incompressible and
irrotational fluid flow around a surface C which has at infinity unit velocity
in the direction of the xl-axis. This function has been discussed in Section
12 of Chapter II, and its first order variation was determined there. Let

G{.. denote the corresponding coefficient defined by (2.12.17), which is

11
closely related to the virtual mass of C with respect to the direction X

¥* *
Let D be the exterior of C and let C be another closed surface with exterior D
* 3* *
such that D,=D*D  is not empty. If ), and Cpl denote the corresponding

quantities for the new domain, we find

(3.6.15) Xr- % = 7 el Py P

where Q is the Dirichlet integral for Leplace's equation. This formuls is
analogous to (6nl)rand can be derived also by application of Green's identity.
It is also to be understood here that qa'and (P; are defined %to be zero out-
glde of their domains of definition.

Evaluating (6.15) the same way as we evaluated (6.1), we find
(3.6.16) S, = === (Vq>f5ydo‘
U 11 ATT 1 !
G

which is already given in (2.12.21), and

2 :n-—l-— +_.].-_ 2_ -—l’-:-!»-l.. 2 2
(3617 870k, = 5k QL5 P 141 Cft-a—é;—(anl) (G R85

Finally, we want to give the oxpression for the second variation of 0(11
in the case of an axially symmetric surface C, under the assumption that the
variation &% is also performed in an axially symmetric way. Let x.y be the
coordinates in the meridisn plane and let y =0 be the axis of symmetry. We
denote the meridian curve of G in thiz plane by ¢c. If K is the curvature

of ¢ at a point (x,y), we Mave
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- (K+—=——te )

O A
e yfh*sv’”

for the corresponding points P on ¢, since the domain D considered lies out-

(3.6.18)

side of G. Using the fact that because of the axial symmetry the velocity
vector prl lies always in the meridian plane, we calculate easily by the

method of this section that

-2 2 2
(3.6.19) > (chl) = =2 K(VLPl)
Hence, we have
(3.6.20) §%0t. =2-Q[8§ 1+-1-§(v )2 (——t=mr -Ky) S 22 ds .
11 "2 eyt ) P, W

Consider finally the case where C is a rotationally symmetric vortex
sheet. In this case, (VCPl)z w1ll have equal values on the upper and the
lower side of the sheet. The curvatures of C will have to be taken with
opposite signs on the upper and lower sidey however, so that in this case

formula (6.20) reduces to
' 2 . _ L
(3.6.21) | b} o1 = 553 QLd @,1>0

Since, by its very definition, the vortex sheet satisfies the condition
é o(llﬂ 0, we recognize that it represents a local minimum for the coeffi-
cient 0{]_1'

We shall give another formula (4.3.1) for the second variastion of the
virtual mass of a body of rotation. The stream function ¥ will enter
Instead of the welocity potential @1 used in (6.20). Both formulas are,
of course, equivalent, but (4.3.1) is better adapted to the uniqueness question

treated in Section 3 of Chapter IV.
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CHAPTER IV

AXTALLY SYMMETRIC VORTEX SHEETS

1. Variational formulation of the problem.

As an application of the methods of Chapter II and as a first step in
the solution of the problem of 3 -dimensional vortex sheets discussed in
Chapter I, we formulate and solve a minimum problem which gives a construction
for vortex sheets in axially symmetric steady irrotational flow of an incom-
preaslble fluid.

Let B denote a compact connected set in the half-plane y =20 which
intersects the x -axis, let b denote a point in the infinite exterior compo-
nent of B relative to y > 0 and let W be a continuum in the half-plane y =20
which, together with the x-axis, joinsb 5 B in the sense that the x -axis and
B+W+b form a connected set. We denote by D the infinite region complementary
to B+W+b in the half-plane y 2=0 and we consider an axially symmetric flow
parallel %o the x ~axis in the 3 -dimensional region obtained by revolving D
about the x -axis. This flow is governed by a velocity potential (P and a
stream function P which are functions of x and y only and satisfy the

generalized Cauchy- Riemann equations

(4.1.1) P, = l*’y/:v . Q=Y

in D and the boundary conditions

(4.1.2) Yo —%g =0

~

on the curves G bounding D, We normalize Y at infinity to have the bshavior

2 2 - ,
(4.1.3) ‘P=1_—-m-+... r“=x.2*y’£ ]

and we call X the virtval mass of the flow.
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We consider B and b to be fixed, and we attempt to choose the variable
conbtinuum ¥ so that
(4.1.4) X = minimum
We shall prove that a unique extremal continuum W for (1.4) exists, is an
analytic curve connecting b with B or with the x-axis, and geﬂerates a surface
of revolution about the x-axis characterized as a vortex sheet for the flow Y.

As a preliminary, we point out that only a bounded class of continua ¥
need be considered for the extremal problem (4.1.4). For if W rises to a
height h above the x-axis, we can show by symmetrization of B+W+b in the
y-axis, which decreases o, that the virtual mass ¢f of B+V+b is larger than
the virtual mass ({{h) of the flow past a disc of radius h perpendicular to
the x-axis [7, 9]. Sinee pf(h) —>om as h—» w, there is no loss of generality
in reguiring that B+W+b lie in a suitable high strip O==y==H. Suppose now
that W 1s a curve lying within a very large strip |x|<==1I, but in no smaller
vertical strip. Let ¥ be the stream function of the flow of the type (1.3)
in the exterior of the rectangle | x|==I, O=cy<==H in the upper half-plane;
and let ‘P** be a solution of (1.1), defined in one of the two rectangles
obtained from |x|=1I, O=sy<=H by drawing a vertical line through b, which
has a sultable large positive value on this line and which vanishes on the
remainder of the boundary of the rectangle. If W touches the lines [x| =1
at a point 2 in the half-plane y > O near Z, let \P+ denote the branch of 4)
which is defined outside the rectangle | x| <= I, 0= y<=H, and let ¥~ be the
branch of ¥ defined on the other side of W, Then (P*-: \P+ and ¥~ < “P**

near z_, by the maximum principle for (1.1). Hence at 3, for large I,

4 * % -
oY 27 27 SV

(4.1.5)
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*x *
gsince a3 I —=>m we nave ¥ —>0 and ¥ X>0 near z - But Hadamard's fermula

2
(4.1.6) széj(%) EL;J;_Q&

can be applied to show that because of this inequality, a shift of the curve
W inwards, defined by bringing the vertical lines x=:I nloser together and
by replacing arcs of W beyond these lines by vertical segments, will diminish 0.
Indeed, (X can be diminished thus until I is so small that
(4.1.7) 24" il
v ov ’

and hence we obtain bounds on the height and width of competing continua W.
We shall find it more convenient to replace in D the stream function ¥

by the positive solution
(4.1.8) u = Kkﬁyl/g
of the self-adjoint partial differential equation

(4.1.9) Vu= G4 .

From a minimal sequence of domains D for (1.4) whose virtual mass
coefficients cﬁn approach their greatest lower bound, we find that we can
gelect a subsequence, again denoted by Dn’ which converges in the sense of
Garathébdory {37 to a limit domain D. The corresponding functions u form
an equicontinuous family in each closed subdomain of D, whence by suitable
extraction of a further subsequence we can achieve that Y, tend to a linmit
solvtion u of (1.9). Each w is positive in Dn and hence 1is subharmonic there,
by (1.9). Thus if we.let Uﬁ be a harmonic functicn, defined in the region D:
obtained by excluding the exterior of a large circle R from Dn’ which vanishes
on the boundary of Dn and is equal on R to the maximuwn of u, on R, then untiiUn

»*
in Dn' As the domains Dn converge to D, it 1s known that the harmonic functions
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Un approach a harmonic limit U which vanishes on the boundary of D. Hence
the limit solution u of (1.9) in D must vanish on the boundary C of D, since
O=u==1U in D*.

We conclude that V= uy1/2 is the stream function of a parallel flow (1.3)
in D, and therefore the virtual mass (X for D has the desired oxtremal
property (1.4).

In the neighborhood of a point Z of the extremal continuum ¥ bounding D,

chosen In the half-plane y >0 and not in B+b, we make an admissable variation

of the form
(4.1.10) z* = z+%')'% 5

where (0 is an infinitely differentiable function which is identically 1
in a neighborhood QL of z, and vanishes identically outside a slightly larger
neighborhood. By Chapter II, formula (2.9.4), the variation of virtual mass of

under such a shift is found %o be

(4.1.11) S = Re{ZEffuz 922 [ 23 Jdxdy - 8 TT £ S(t) ] +2Q (t)}
DO

Ly~ (z-t)

so(lelr)
where Q_(t) s analytic for t in (land where §(t) is 1 for t in D and O

for t exterior to D. Two applications of Green's theorem yield

2 3un
(4.1.12) O = Re ﬂ u [—-ZLJ 3-12 —4 lxdy - TTE §(t)u’ +EQ(t8>
ol o 16y* iy

+ o(l&lz) ’
where Q(t) is another analytic function of % in Q.
From the extremal property (1.4) of X, we conclude that SO =0 for all

sufficiently small complex €. Hence, by the usual argument
3u Uz 2 3uu

(4.1.13) 8mS(ehd = gj a3 (22 . W g+ q(e)
pCy y 167 iy

o

i - o
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in{). We conclude from (1.13) that u° is continuous throughout()q if we

t
define it to be zero in the exterior of D. The continuity of ui in the
neighborhood of each point zg of W is the variational condition imposed upon W
by (1.4) which will lead us ultimately to deduce that revolving W about the

X -axls generates a vortex shoet.

2. Regularity of the solution.

Since ui is continuous in {1, we can estimate the integrand in (1.13)

once agaln and prove that ui actually satisfies a Lipschitz condition there.
dence in the region lutl:7 0 we can solve the differential equation

(4.2.1) u dt+ updt = 0

for the level curves of u. In particular, any arcs of the boundary u=0 of D
in the region |ut| =0 must be differentiable curves. If we pickC) to lie in
this region, we can apply (1.13) repeatedly to show that ui has continuous
derivatives of several orders. Thus for a fixed determination of the square

roots involved, we show using the proof of the reflection principle that
(4.2.2) u =j‘ (u?;)l/2 dz + (ug)l/2 dE?

is an analytic solution of (1.9) in the region lutl =0, and the boundary
arcs u=0 of D there must be analytic. Formula (2.2) gives an analytic
continuation of u across theée arcs according to which u transforms into its
negative as we cross the boundary, and is therefore two-valued.

In order to see that there actually exist arcs of W in the region |ut]:> 0,
it is sufficlent to notice that every point Z of W which can be touched by a
small circle R lying in D is of this type. For if g is the Green's function
of (1.9) in R with its infinity at the center of R, then for a small enough
€ >0, we find that in a neighborhood of z, in R

(4.2.3) u >eg




Since u and g both vanish at Z, We can t ake normal derivatives there to
obtain

- 2% s 28
(14.0204-) a.zj /E ay 3

whence lutit; E_lgt\‘7 0atz.
It remains to discuss those portions of W on which |uZ| = 0. These
are identical with the subsets of W on which ‘(Px‘ri LPX‘- 0, and we shall use

properties of the quasi-~conformal mapping

(4.2.5) W= ch+in

to discuss their nature. Let us denote by " any region complementary to B+b
in which

(4.2.6) o< |, +1V I<k€ ,

for some small €£30. The boundary lq)x* iLPx[ = £ of this region consists
of a finite number of analytic arcs which transform by (2.5) into the
circumference |w| = £, covered finitely many times, say, m times. Since the
mapping w= CPx+ N)X is univalent in the small, we conclude that the image
of |7 in the circle O< |w|< € is a Riemann surface of m sheets. Hence the
boundary of |’ contains at most m continua on which ICPX'F ikPx[ =0, and we
shall prove that these continua reduce to isolated points.

We remark that the quasi-conformal mapping (2.5) has a dilation quotient
in (7 which is smaller than

' D)

(4.2.7) K = max (max y, max -

for all z=x+*1y in ['. If now one of the continua lCPx+ i\le- 0 bounding I '
were non-degenerate, there would exist a positive lower bound & for the

Dirichlet integral

[ 2




of any function U in |7 which vanishes on the boundary portions \ch+ :N-’Y\ =0
and is icentically 1 on the boundary curves |Q_+ iLPx\ = £, We define such

a function U by the formula

o ,  \wl<r
(4.2.8) U=J ,
1ong'I' log"IEf‘ ’ lwl2r

where C=<"r =" ¢ . We can estimate its Dirichlet integral in terms of the

quasi-conformal mapping w= CPX + iLFx to obtain (with w=u+iv)

(4.2.9) S, < &S{n’;w‘;}dxﬁy

< w ] {Fedfee

r<|Wwl«e

£
SR N
= 27T mK d
rj (log %)2 ﬁz ,O )O

LT mK ]
(log j;')

The estimate on the right approaches zero as r —0, and this gives a contra-
diction of thc hypothesis that the continua ICPxJL i‘Px[ =0 on the boundary of [
do not degenerate to points.

In order to see quite clearly that the continua [P, * 1WX\ =0 of the set
M all reduce to isolated points, we note that the analytic arcs of ¥ in the
region ICPx’f quxl =0 can be given a cortain order as we proceed from b to B
aiong W. This follows from the fact that deleting a small arc from W must
discennect W, since it diminishes the virtual mass Of . The two disconnect.e’d
parts of W are composed of those zsrcs which come before and those which come
after the deleted one, respectively. Thus any continuum of W on which

(CPX* 1'4"}{! =0 must be preceded and must be followed by ares of W in th> regicn
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[CPX+-1(PX |7>G, and thsrefore must be a boundary component of some region i’
of the type (2.6). Hence any such continuum reduces to a point, and we can
conclude that these points are removable singularities of the solution u of
(1.9) defined by (2.2). For topologically more complicated problems of the
type {1.4) than we have posed here, the function u can have a certain number
of branch-points where uZ vanishes, but in the present case, because of the
monotonic dependence of A on D, this possibility is excluded. The extremal
continuum W must reduce to a simple arc without forks, since otherwise deletion
of a branch of W, decreasing X, would be feasable. The arec W is an analytic
curve, since it consists merely of a level curve u=0 of a regular solution
of (1.9).

It follows from the above arguments that the surface of revolution about
the x -axis generated by W is analytic and that the speed !VCPI of the flowCP
past this surface is continuocus through it, so that the surface represents a
vortex sheet in the flow. One checks that on either side of the vortex sheet,
in the present example, the velocities have opposite directions. More compli-
cated vortex sheets with several branches and forks can be constructed by the

same method with relatively little additonal difficultiy.

3. Uniqueness.

We sketch In this section a proof of the uniquesness of the extremal
curve W solving (1.4) which is based on the ideas of Chapter III. A possibly
shorter approach to the whole problem might be achieved through the Dirichlet
principle, but we prefer here to emphasize the use of variational methods.

Let ¥ be any curve joining b to the set B or the x -axis. The curves W
and W*, together with B and the x ~axis, bound certain subregions D, of D.

In each region D,, ws let U be the harmonic function which vanishes on the
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¥*
arcs of W bounding D,,, which has the value 1 on the ares of W bounding D
and which has a vanishing normal derivative at any points of B or the x-axis

bounding D,,. We denote by W, the aggregate of all level curves U=+1 in the

t

various regions Dy and we denote by o(t the virtual mass of the flow (1.3)

*
past the object B+Wt+b, In particular, Rosl and W, =W , while o{0= x,

1
% *
and (7(1= A is the virtual mass coefficient corresponding to W .

From the formula

2
(h3.1) 8% 21|17 (B2las [{v (5w +Z(swiuc
2 i Ly

for the second variation of (A under a normal shift &% of the boundary,

we derive the expression

P
da & du
(4-3.2) —t =”£(\7 522 S
d% Ly
D

for the second derivative of X & By the continuity of (V u)"'Z across Ioal!

and by (1.6), we have

dox
(4.3.3) —d—;f‘l =0
(7]
£=0
and by (3.2)
o
(4.3.4) —f >0 , o=t<1
at

It follows that o{t>ox for t >0, and, in particular,

(4.3.5) oF > o

L]

provided w does not coincide with W. Formula (4.3.5) establishes that the
extremal curve W for (1.4) is unique. A closer examination of the proof even
shows that an arbitrary axially symmetric vortex sheet joining b to B has a
meridian curve satisfying (1.4), and hence a vortex sheet such as we consider

hers must be unique.
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CHAPIER V

VARTATION OF EIGENVALUES

1. Apalytic dependence on psrameters.

We consider now the eigenvalue problem of determining a non-trivial

solution of the partial differential equation

(5.1.1) TPu+ Au =0

which vanishes on the boundary C of the plane domain D. We consider the
elgenvalues M as functionals of the varying domain D.

Hilbert [11] proved the continucus dependence of the eigenvalues A on
the coefficients of a differsential equation if the basic domain D is kept fixed.
We can utilize his method and his result by the artifice used in Chapter II.
We transform the domain D into a domain D* by means of a deformation (2.2.2)
and ask for the eigenfunctions u%(x1 ,xz) and eigenvalues A of the same
equation {1.1) with respect to the new domain D . Then, we introduce the

functions
*, % *
(5.1.2) Ulxy,x,3E ) = u (x,%,)

~ defined in the fixed domain D and treat the eigenvalue problem for this
fixed domain arising from the transformstion. We may describe U(xl,xz;E) as
an eigenfunction in D with respect to the differential equation (ses (2.2.9)

and take pnf) =0)
(5.1.3) L, [U7+ Nou=o0

and the boundary condition U=0 on 0. In this way, the domain dependence of
*
the sigenvalue )\ iIs translated into its dependence on the coefficisnts

of the new differential operator LE'
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We may now proceed as in Chapter II and derive the variational formulas
for the eigenvalues A by a proper use of Green's identity. We may assert
in view of (2,2.8) that all coefficients of the differential expression
LEEU] depend analytically upon the parameter €. It is then easy to se
that all non~dsgenerate elgenvalues )\* and their corresponding eigenfunctions
U depend analytically on £, provided U is normalized.
In order to prove this statement we observe at first that the Green's functiocn

2(P,Q; £ ) belonging to the differential operator L& depends analytically on £ .

In fact, the parametrix function s(P,Q; &) of this differential operator,
defined for two independent variables in analogy with (2.3.5), may be chosen K
to depend analytically on & for P#Q. The Green's function g(P,Q;& ) may then '
be obtained in form of a Neumenn's series which solves the integral equation
(2.4.20) with the analytic kermel (2.4.21) in €. Since the Neumann's series
converges uniformly, we see that g(P,Q; €) depends analytically upon this
parameter slso, at least in a neighborhood of the value € =0.

The eigenfunctions U(P; £) of the differential equation (1.3) may also

be considered as eigenfunctions of the integral equation

(5.1.4) U(p;€)- A*jj g{P,Q; £ )U(Q; € )Q(Q)d’tQ = 0
D

with the same eigenvalues /\*. The eigenvalues )\* a.ppear as the roots of
an entire function D{)\ 3 E} in )\ which 1s also anslytic for sufficiently
small €. If )\* is non-degenerate, we have ?ax- D{ ?\*; E:,} # 0 near the
value € =0 and /\*=' E( £) ie an analytic function of £. Since the
eigenfunctions U(P; £) can be represented as Fredholm minors which depend
analytically on €, we have thus also proved the analytic dependence of

U(P;€) on ¢ , 1f the corresponding eigenvalue is non~degenerate.
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We will apply this result in particular to the case of the lowest eigen~
value of the partial differential equations (1.3) and (1.1) and its corresponding
eigenfunction. It is well known that the lowest eigenvalue of an equation (1.1)
is non-degenerate and consequently we may develop U(F; &) and A (E) 1into
power series in £ which converge for small values of £ . Henceforth, /\*(8)
and U(P; £) shall always denote the lowest eigenvalue and its corresponding
eigenfunction. It is obvious how to generalize the following considerations
to the case of a non-degenersate eigenvalue of arbitrary order.

Since we can put

(5.1.5) Ne)= A+red+2e? A+,

(5.1.6) UP; ) = u (P)+Eu (P)+5 2w )+ .,

where Ao and uo(P) are the eigenvalue and eigenfunction of the original
domain D, we may calculate all other terms )5, and u,(P) of the above series
development by inserting these serles into (1.3) and comparing the coefficients
of equal powers of & . This procedure is called in physics the "perturbation
method™ and is widely used in applications. It is easy to handle and satis-
factory in most problems in applied mathematics. Obviously, it works only in
the case of analytic coefficiente in the differsntial equation. We can now
apply this procedure in order to study the depsndence of the eigenvalues upon
their domein of definition.

We introduce for this purpose the tensor

v, 24 2
(5.1.7) Uik(P) = 2 57, P Sik(vuo) ,

which is symmetric and satisfies the equations

2 U
(-.1.8) Z—-“ik N e
k=1 2% °

u
X,
2 i ©
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We obtain the following formula similar to (2.6.6):

2 2
28
(5.1.9) 4. = . E U i+§;—a-()\8)ru2 at .
dsg&:,o ‘g\{irkﬂ- ik 'axk =1 Zxk ok’ o

It is easily seen that by virtue of the equations (1.8) the integrand is a

divergence term and that the expression (1.9) may be reduced to an integral
extended over the boundary C of D. In this way, we obtain in analogy with
(2.6.15)

P
(5.1.10) SA =S (28 S a5 .
2V
C
This formula 1s due to Raylsigh and is derived here from the method of

interior variations. If we use the complex notation (2.8.6) introduced

in Section 8 of Chapter II, we find

ah| 2F 2%2 .. 2 2
(5.1.11) aE o ~ Re g[s e (—é-;f) +2 =7 ()\OF)uO]d’t

Let us remark finally that the formula (1.10) exhibits clearly the
monotonic dependence of the eigenvalue )\ upon the domain D. Ve see that
for oV >0, that is, for a shrinking domain D, the eigenvalue A increases.
Analogous formulas can be given for all higher non-degenerate eigenvalues of

the differentlal equation (2.1) and similar conclusions can be drawn.

2. Ihe Hilbert-Green function.

In this section we will calculate the first coefficient ul(P) in the
development (1.6) of the eigenfunction U(P;E€). In this way, we will also
prepare the determination of the term )\2 which will give the formula for
the second variation of the eigenvalue.

In order to calculate u, We define the Hilbert-Green function [ YP,Q)

for the differential equation (1.1) and the domain D as follows:
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a) The function [M(P,Q) is twice continuously differentiable in D,

except at P=Q. It satisfies the inhomogeneous partisl differentisl equation

g + ™ 2 +
(5.2.1) Lo[P(P,Q)] }\OHP,Q) V.PF'(P,Q) AOP(P,Q)

-~ Y. In)
= 3 i
o\ Iuo\‘il

b) The function ‘ﬂ(P,Q)*'E%F log PQ is continuously differentiable
in D.

¢}  [(P,Q) vanishes for PEC, Q€D,

The Hilbert~Green function has to be applied to differential operators
for which a proper Green's function does not exist, as is the case for {1.1).
The existence of this function can easily be shown from the basic theorems
on integral equations. In fact, let G(P,Q) be the Green's function of D

with respect to the differential equation Lo[u]-(L We have obviously

(5.2-2) uo(P) - )\OJSG(P:Q)UO(Q)(ICQ s
D

and ['(P,Q)-G(P,Q) = H(P,Q) is a continuously differentiable function in D

which vanishes for PEC. E(P,Q) satisfies the differential equation
(5.2.3) Ve, + X BP0 = u (P)s (@)- A G(P,Q)

If we can show conversely that (2.3) has a continuous solution H in D which
vanishes for P€ G, we can construct {'(P,Q)=G(P,0)+ H(P,Q). The necessary
and sufficlent condition for the existencs of a solution of the inhomogeneous
differential equation (2.3) which vanishes on the boundary C of D is the
orthogonality of its right-hand side to the eigenfunction uO(P). But this
condition is fulfilled in view of (2.2) and the existence of the Hilbert-

Green function has thus besen established.
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We observe that the above conditions (a), (b), {c¢) do not yet determine
M{P,Q) uniquely, since the addition of any multiple of uO(P) to [(P,Q)
does not affect thess requirements. We determine [(P,Q) uniquely by the

additional condition

(5.2.4) || meesa @azg =0
D
It can be shown in the usual way that the Hilbert-Green function (P,Q)4

which is now unique, is symmetric in both its argument points.

Consider now a function v(P) which satisfies the inhomogeneous equation
(5.2.5) Livli* Av(P) =2(P) , «v(P) =0 for PEC

We have by Green's identity and the vanishing of [ and v on C

(5.2.6) JI {VLOU"]- {"Lo[v]}d'l‘:Q = v(P)
c

Using now (2.1) and (2.5), we obtain the following representation for v(P):

(521 we) - L( P(P,Q)f(Q)d't:Q+uo(P)fJ s @viQaT, .

This result is analogous to the solution (2.1.6) of the corresponding
inhomogeneous equation (2.1.5) in the case when a proper Green's function exists.
We observe that equation (2.5) determines v(P) only up to a multiple of the
eigenfunction ub(P), which is clearly shown by the solution formula (2.7).

We remark also that f(P) cannot be prescribed arbitrarily, but must be
orthogonal %o the eigenfunction uo(P).

For later applications we want to prove that the guadratic functional

(5.2.8) f{f,f} s“ 55 P(P,Q)f(P)f(Q)dthch
DD

based on the Hilbert-Green function is positive gemi-definite and that it

vanishes only if £{P) is a multiple of the eigenfunction uo(P). We may
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put every function £{(P) into the form

(5.2.9) £(P) = uo(P)jjfuod'L' (),
D

where £, (P) is orthogonal to uo(P). Becauss of (2.4), we have

{5.2.10) f{f,f} - f{fl,fl} ,

so that our assertion will be proved if we show that‘f{f,f:} is positive-
definite for all functions f£(P) which are orthogonal to ub(P).

For all such functions f£{P) the inhomogeneous equation (2.5) has

solutions v(P) of the form (2.7). Hence, we may write

(£.2.11) a\"{r,f} - -ﬁf(?)v(?)dcl, = -55 (I.o[v]+ A ov)vdt .
D D

Applying finglly Green's identity, we obtain
(5.2.12) Jf{f,f} - Sﬁy[(VV)Z- A T .

It is well lmown that we can characterize the first eigenvalue of the

differential equation (1.1) as the minimum value of the ratio

ES Vvt Sg vaT
D

for all continuously differentiable functions v{P) in D which vanish on
the boundary C. The minimum value is accepted only if v(P) is a multiple

of the eigenfunction uo(P). Hence, we conclude from (2.12) that
(5.2.13) X{f,f} >0

for all functions £(P) which are orthogonal to uo(P). Equality can hold in
2.13) only if v(P) is a multiple of uo(P), which implies by (2.5) %that

£(P) ==0. This shows the positive-definite character of gf{f,f} .
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We apply now the solution formula (2.7) to the equation

23, 72s
i 2 - - 4 - _.,__l + .....—-«g
(5«2.14) Lo[u1]+ )‘oul )\luo LOEUO-J )\Ouo(ax—l sz)

obtained by comparing € terms in the relation found when we insert (1.5)

and (1.6) into (1.3). This gives

{ ) (P) (L7 lu Q)3+ ()(aq 95 ==2)1%P,q) (P,

5.2.15 P) = L Q Q P,Q d'!:' P
w® = ] 00 s 5+ =

whers
2s ’as

- 2,1,
(5.2,16) M 2]511 (23:1 32

We can simplify the result (2.15) if we introduce the symmetric

variational tensor

29,® 50pa) , 2%%) oreg
(5.2.17) V., (F5Q) = 9}{1 D, ZE Y

- SikVuo(P) - VI(p,q)

We may then bring (2.15) into the form

S 2
(5.2.18) ul(Q) - “{Z Vik(P Q) "k + Z -éa;-k ()\osk)uOF(P;Qg dTg

1,k=1 k=1
+ HuO(Q)

We havo the differential equations

(5.2.19) Z T T = - A e (B TE 1 (@) @R

Hence, we may bring (2.18) into the divergence form

2 2
(220 w@ = |] k}:; = {i}; v, (BQS, * ) S, (P) F"(P;Q).}d’t:?
D J

l’\)

-

T
2
- (Q)M 25 (Skuo)dfc
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We can reduce this domain integral to a line integral extended over the

boundary curve C of D. We use the fact that [T and u vanish on C and take

into account the 31ngu1ar1ty of the tensor V at the point Q. We obtain

7 2u_(Q) Pu (P)
(5.2.21) u(Q)-> S(Q) 79 V?F(PQ) %

1-1 ’)C _i/P 9_‘/

(s-V)dsp .
Let us return to the eigenfunction u (Q;i;) of the original differential
*
equation (1.1) with respect to the variable domain D . Since
*
(5.2.22) Ulx),%y3 £) = w (% €S, ,%,+£8,3 €)

we derive from (2.21)
¥
(5.2.23) QL.(M

. S 20, 2%

a€ v, Ty SV
£=0 C
or, in equivalent variational form
(5.2.24) SulQ) = - M dVds
‘22@
¢

The funetion

1 211 (P)
(5.2.25) h(Q) = -S M 57 (s-z/)dsP
5 P

will play a role in the second variation of the eigenvalue A. Ve observe

that because of (1.10) and (2.1)

(5.2.26) Lo[h(Q)]+ )\Oh(Q) 2 - /\luO(Q)

b

and we verify easily that h(Q) has on G the boundary values
2u 2 2u (Q)
(5.2.27) h(Q)='-5'7'/g S+2) = - Z 5,(Q) —=%=—

251 .
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3. Second variation of the eigenvalue.

We are now able to calculate the coefficient )\2 in the series development
(1.5) for the eigenvalue N € ) under a deformetion (2.2.2) corresponding to
a normal shift of C. It is possible to achieve by a laborious process of
rearrangement of terms and of integration by parts a rigorous derivation
very similar to those performed in Chapter II. The end result of the
calculations can be obtained easily, however, by the followlng heuristic
argument.

We suppose that C is an analytic curve and that u(P) and u*(P) are both
ragular functions in the original domain D and satisfy the differential

equations

(5.3.1) A2u+ Au=0 |, Azu*

* )\*u* =0
in D. We apply Green's identity

(5.3.2) j\j\ {u*[(lzu" Aul- u[ﬂzu* + )\*u*]} dT =

D

S (u %%— - '%%‘)ds-* (M- /\*)Sguu*d’t
D

Since u(P) vanishes on C and in view of (3.1), we obtain
* * *
(5.3.3) { A -)\)ffuudt =Su "g;"}ds
D (o]
We observe that because of (2.23) and (2.25)

(5.3.4) 2 (®) = u(P)*E n(P)+ole) .

* *
Assuming u (P) vanishes on a deformed curve C , we have

Ll * * 2 *
(5.3.5) 0= (BF) = (p)+ 2B ¢ gyl 20 (B) pRy( 02,
2V 2 _)/2
2 *
where E£N(s) represents tne amount of the normal shift from C to C at the

point P. Hence
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[

(5.3.6) (A" A)1+€ thudt +o(g )]
D

o F CoaR
,_S 2u. 2w ENds-‘l\S _2__11?: %&ZN?-ds,,o(a-?)

G g oV
T 2,J1g_ai 2u ¢22,. _ :2 | 2B 2u
= J(av) ENds 2 97/2 ,ayg—l\dw (& Y, 2 Ndg
C G
+o(82) .

We observe that the last right-hand integral can be written in view of (2.27)
and (2.26) as
(5.3.7) €% X%ﬁ- hds = - €7 Sg[(Vh)z— >\0h2]d1: + A SS hadT .

C D

D
%* 2
Finally, we put A = A+ E/\1+E‘§‘ )\2+ ... and £ind by use of {1.10) and by

comparing the coefficients of 82 on both sides of {(3.6)

2
(5.3.8) A, =- |25 28w 2| {1 A uc

v )
Since u(P) satisfies the first equation (3.1) and vanishes on C, we have

2
2w 1 2.u

where P(s) is the radius of curvature at the point P with the parameter

value s. Hence, we may bring (3.8) alsc into the form

2
(5.3.10) A, = - Gg(g‘i )2 ng)-- ds-ZSS[(Vh)zm l\ohzld’t

In general, h(P) will not vanish identically on C and we cannot assert that

the second right-hand integral is non-negative. Thus, even in the case of a
convex curve G (P Z0) we cannot be sure that )\2 is negative.

We shall consider in the next sections variations of a more special form
for which the convex dependence of A npon the variation parameter can bte
shown. It will appear that interior variational formulas are more convenient

for this purpose than formula (3,10).
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4. Cogvexity.
The variational formulas for the silgenvalue A and the eigenfunction

u(P} become very simple if we assume that the complex vector
F(z,z) = Sl(xl,xz) + iSz(xl,xz)

is an analytic function of the complex variable z. In this case, we have by (1.11)

(5.4.1) g—g- = =2 /\o Re SS F’(z)uo(z)zd’ﬁ} .
=0 D

2 2 *
The analogous formula for d“A/d £° at E =0 under a variation z =z+E& F(z)

is rore difficult to derive from (3.10), because such a deformation is not

equivalent to a normal shift when second order terms are involved. But for
2

a coaformal mapping, LEEU] EVZU and 0= |1+ e F’| , 80 that substitution

of (L.5) and (1.6) into (1.3) and comparison of terms in 82 yields
2 4 ’ ’ 2
(5.42) VR, + A wy = -2Ajw -4\ u Re {F } - Ay~ 4 AU, Be{F' 3 -2 u 1F1° .

Since U, vanishes on C, the eigenfunction u must be orthogonal to the right-

hand side of (4.2), and this gives

(5.4.3) A, = -4 Alﬁui Re {7} at -ZXOSXui!F']Zd"C -2)\1gguou1d’t
5

D D
- 4)\0 Sguoul Re {F} atT
Using the condition
(5.4-4) Vu, + Ay = - Aju -2 u_ Re {F }
for € terms in (1.3) to cancel and noting that with
(5.4-5) £~ A +2Au RefF }

formala (2.12) gives

(5.426) L{r,e} - jf[(Vul)z- ANt
D
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we bring (5.4.3) into the form

(5.4.7)  h, = -2&{5,£} - 2>\058u§]F’|2d’C “ 4)\13&‘2 Re{?'} 4T
D

Using {4.1), we simplify (4.7) to obtain

2 _ 2 712 2,
= -2 A A {1,1’} 2)\0 Sle ! u 4T
€ =0 D

We observe that the right-hand side of (4.8) is always negative, except for

2 2
(5.4.8) A i-s:% -2 (%%)

the case F/(z) =0; the deformation induced in this exceptional case is a
translation of the whole plane, and it is obvicus that in this case, indeed,

A(E)= A(0). Thus, we are led to the differential inequality

2 2
4 - =k A _, @Ay?

s
whicn proves the convexity of the reciprocal of the eigenvalue under
infinitesimal analytic deformaticns.

In order to generalize this result to finite deformations, we consider

the partial differential equation
(5.4.10) ‘fzu*'A lh’(z,T)\Zu =0 , u=0 on C ,

where h(z,T) is an analytic function of the complex variable z&D and the

real parameter T, O<<T<1. We set h’ = %%2 and assume h”(z,0)=1.

Obviously, (4.10) is the membrans equation for a domain DT obtained from D

by a mapping h(z,T), referred back to the domain D. We observe that the
differential equation can be treated independently of the univalency of

h(z,T) and permits a definition of eigenfuncticns and eigenvaluss of the
membrane problem also for non-schlicht domains. We normalize the eigenfunctions
u(z;T) of (4.10) by the condition

(5.4.11) gguzlh'(z,T)]zd’C -]
D
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and consider uT=u(-z;T) and /\T*-v MT) in their dependence on T. We may
reapeat all calculations of this chapter leading to expressions for "dd'%'

2
Q—T-%- , but now these derivatives can be determined for finite values of T.
d

We introduce a Hilbert-Green function PT(z, 7 ) by the conditions

(5.4.12) PFTh(z,7)+ Al (2,012 Mz, 7) = |0 (2,1 Pug(2)ug(F)

(5.4.13) PT(Z,Z;) +Eq""_1;log\z-l;‘
is continuously differentisble in D,

(5.4.14) {p(z,%) =0 for =ze€C, JeD
(54150 [[ Mz, 0 )up(a)1w’ (2,102t = 0
D

The existence of such a fundamental function can be shown in exactly the

same manner as was done in Section 3. Let di‘l‘ {f,f} be the quadretic functional
defined in (2.8), but with PT instead of |’ as kernel. We sec immediately
that XT {f,f} is also semi-definite and vanishes only for the =igenfunction Unp»

One finds by easy computation
(5.410) 4 = [[up@? 25 (01T
D
and
& 2]\
(5.4.17) %;-5-2 —\l(—T)- (%:}) +24, {fT,f } )\(T)S *Uh (z,1) }uT(z)zdc-O ,
with

(5.4.18) fp = uT(z)[%%' [ h’(z,T)‘z-*- A(T) —% (lh/(z,T)\z)]

Thus, we may write

2
(5.4.19) —‘L- 5 (3w = o & {tptr} + 4 V -aaT—z h%(z,)1% W aT .
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The convexity of A(T) is thus ensured if we csn assert that
2
(5.4.20) 2 |h’(z,T)\220, for €D
2
oT
This is, for example, the case if
(5.4.21) hiz,T) = z+ TF(z) ,
since we have then
2
(5.4.22) 2 |n7(z,T)|? = 2}F/(2)1?
2T

We have shown that the reciprocal )\(T)‘-l of the eigenvalue of a family
of domains DT is a convex function of the parameter T if the domgins are
obtained from the original domain D by the conformal mapping (4.21). I% is

not necessary that all domains DT be schlicht in the complex plane.

5. Application fo extremal problems.

As an gpnlication we consider the family F of univalent functions £(z)
in the unit cirele with £{(0)=0, £7(0) =1, and ask for a function fm(z)e F
which leads to a domain A\ with meximun first eigenvalue A of the membrane
problem. We introduce the function h(z,T)=gz+ T[fm(z)- z1 arnd the corresponding

eigenvalue /\T. We find from (4.16) and (4.19)

(5.5.2) %P' (‘j)\h) - ‘HS\%EZ RE{f;(z)- 1} +2rlg!- 1Fuc
D
(5.5.2) & (A = 2L +'Z'SX 2 1¢-11%aT =0
o g2 AT Rfr /\DuT-m

Observe that the first derivative of J}‘\' vanishes for T=0; this follows from
the fact that f;(z)— 1 vanishes at the origin and from the radial symmetry
of the first sigenfunction for the cirele. Hence by (5.2), hdf (1/A) will be
poaitive for all T > 0 and we find

(5»5.‘3) _;XJG.-S >/")]\'“' ’

Q
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if /\O is the lowest eigenvalue of the unit circle. But since A(1) is

the largest possible value of )\ , wie conclude that fm(z)szfz; that is, among
all equivalent domains the unit circle has the largest eigenfrequency. This
result is due to Polya - Sz.-s-g-lvi [RE

Ne obtain the following corollaryt If a domain D satisfies the condition

(5.5.4) S‘juzF(z)d’U =0
D

for all functions F(z) regular in D and vanishing at a point PE€D, where u is

the first eigenfunction of D, then D is necessarily a circle with P as center.
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